File size: 6,795 Bytes
8733b6e
e85a61d
 
 
 
5fa0aa7
e85a61d
7c7890b
 
cac33a7
7c7890b
 
 
 
 
cac33a7
f6d7fe3
 
d52c01d
cac33a7
 
 
 
 
595db11
5fa0aa7
cac33a7
 
 
 
 
 
 
 
 
0290645
 
5fa0aa7
 
7c7890b
e85a61d
 
7c7890b
 
 
0290645
 
5fa0aa7
7c7890b
 
259d09b
595db11
 
 
 
cac33a7
0290645
259d09b
8733b6e
cac33a7
5fa0aa7
 
 
 
 
 
259d09b
cac33a7
259d09b
cac33a7
e85a61d
0290645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cac33a7
7c7890b
0290645
 
e85a61d
0290645
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c7890b
 
8733b6e
cac33a7
7c7890b
 
 
 
 
259d09b
7c7890b
ebd6aa7
 
7c7890b
 
 
0290645
 
 
 
 
f6d7fe3
 
 
d52c01d
7c7890b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e4bf12
259d09b
4e4bf12
7c7890b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e85a61d
 
cac33a7
595db11
cac33a7
595db11
cac33a7
 
 
595db11
cac33a7
 
595db11
 
 
cac33a7
259d09b
 
cac33a7
 
595db11
e85a61d
7c7890b
 
 
cac33a7
f6d7fe3
 
 
 
8733b6e
f6d7fe3
7c7890b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import spaces
from diffusers import (
    StableDiffusionXLPipeline,
    EulerDiscreteScheduler,
    UNet2DConditionModel,
    AutoencoderTiny,
)
import torch
import os
from huggingface_hub import hf_hub_download


from PIL import Image
import gradio as gr
import time
from safetensors.torch import load_file
import time
import tempfile
from pathlib import Path

# Constants
BASE = "stabilityai/stable-diffusion-xl-base-1.0"
REPO = "ByteDance/SDXL-Lightning"
# 1-step
CHECKPOINT = "sdxl_lightning_2step_unet.safetensors"
taesd_model = "madebyollin/taesdxl"

# {
#     "1-Step": ["sdxl_lightning_1step_unet_x0.safetensors", 1],
#     "2-Step": ["sdxl_lightning_2step_unet.safetensors", 2],
#     "4-Step": ["sdxl_lightning_4step_unet.safetensors", 4],
#     "8-Step": ["sdxl_lightning_8step_unet.safetensors", 8],
# }


SFAST_COMPILE = os.environ.get("SFAST_COMPILE", "0") == "1"
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", "0") == "1"
USE_TAESD = os.environ.get("USE_TAESD", "0") == "1"

# check if MPS is available OSX only M1/M2/M3 chips

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch_device = device
torch_dtype = torch.float16

print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
print(f"SFAST_COMPILE: {SFAST_COMPILE}")
print(f"USE_TAESD: {USE_TAESD}")
print(f"device: {device}")


unet = UNet2DConditionModel.from_config(BASE, subfolder="unet").to(
    "cuda", torch.float16
)
unet.load_state_dict(load_file(hf_hub_download(REPO, CHECKPOINT), device="cuda"))
pipe = StableDiffusionXLPipeline.from_pretrained(
    BASE, unet=unet, torch_dtype=torch.float16, variant="fp16", safety_checker=False
).to("cuda")
unet = unet.to(dtype=torch.float16)

if USE_TAESD:
    pipe.vae = AutoencoderTiny.from_pretrained(
        taesd_model, torch_dtype=torch_dtype, use_safetensors=True
    ).to(device)


# Ensure sampler uses "trailing" timesteps.
pipe.scheduler = EulerDiscreteScheduler.from_config(
    pipe.scheduler.config, timestep_spacing="trailing"
)
pipe.set_progress_bar_config(disable=True)
if SAFETY_CHECKER:
    from safety_checker import StableDiffusionSafetyChecker
    from transformers import CLIPFeatureExtractor

    safety_checker = StableDiffusionSafetyChecker.from_pretrained(
        "CompVis/stable-diffusion-safety-checker"
    ).to(device)
    feature_extractor = CLIPFeatureExtractor.from_pretrained(
        "openai/clip-vit-base-patch32"
    )

    def check_nsfw_images(
        images: list[Image.Image],
    ) -> tuple[list[Image.Image], list[bool]]:
        safety_checker_input = feature_extractor(images, return_tensors="pt").to(device)
        has_nsfw_concepts = safety_checker(
            images=[images],
            clip_input=safety_checker_input.pixel_values.to(torch_device),
        )

        return images, has_nsfw_concepts


if SFAST_COMPILE:
    from sfast.compilers.diffusion_pipeline_compiler import compile, CompilationConfig

    # sfast compilation
    config = CompilationConfig.Default()
    try:
        import xformers

        config.enable_xformers = True
    except ImportError:
        print("xformers not installed, skip")
    try:
        import triton

        config.enable_triton = True
    except ImportError:
        print("Triton not installed, skip")
    # CUDA Graph is suggested for small batch sizes and small resolutions to reduce CPU overhead.
    # But it can increase the amount of GPU memory used.
    # For StableVideoDiffusionPipeline it is not needed.
    config.enable_cuda_graph = True

    pipe = compile(pipe, config)


@spaces.GPU
def predict(prompt, seed=1231231):
    generator = torch.manual_seed(seed)
    last_time = time.time()
    results = pipe(
        prompt=prompt,
        generator=generator,
        num_inference_steps=2,
        guidance_scale=0.0,
        # width=768,
        # height=768,
        output_type="pil",
    )
    print(f"Pipe took {time.time() - last_time} seconds")
    if SAFETY_CHECKER:
        images, has_nsfw_concepts = check_nsfw_images(results.images)
        if any(has_nsfw_concepts):
            gr.Warning("NSFW content detected.")
            return Image.new("RGB", (512, 512))
    image = results.images[0]
    with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmpfile:
        image.save(tmpfile, "JPEG", quality=80, optimize=True, progressive=True)
        return Path(tmpfile.name)


css = """
#container{
    margin: 0 auto;
    max-width: 40rem;
}
#intro{
    max-width: 100%;
    margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="container"):
        gr.Markdown(
            """
# SDXL-Lightning- Text To Image 2-Steps
**Model**: https://huggingface.co/ByteDance/SDXL-Lightning
            """,
            elem_id="intro",
        )
        with gr.Row():
            with gr.Row():
                prompt = gr.Textbox(
                    placeholder="Insert your prompt here:", scale=5, container=False
                )
                generate_bt = gr.Button("Generate", scale=1)

        image = gr.Image(type="filepath")
        with gr.Accordion("Advanced options", open=False):
            seed = gr.Slider(
                randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1
            )
        with gr.Accordion("Run with diffusers"):
            gr.Markdown(
                """## Running SDXL-Lightning with `diffusers`
```py
import torch
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_2step_unet.safetensors" # Use the correct ckpt for your step setting!

# Load model.
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")

# Ensure sampler uses "trailing" timesteps.
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")

# Ensure using the same inference steps as the loaded model and CFG set to 0.
pipe("A girl smiling", num_inference_steps=2, guidance_scale=0).images[0].save("output.png")
```
            """
            )

        inputs = [prompt, seed]
        outputs = [image]
        generate_bt.click(
            fn=predict, inputs=inputs, outputs=outputs, show_progress=False
        )
        prompt.input(fn=predict, inputs=inputs, outputs=outputs, trigger_mode="always_last", show_progress=False)
        seed.change(fn=predict, inputs=inputs, outputs=outputs, show_progress=False)

demo.queue()
demo.launch()