File size: 6,409 Bytes
8a96a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b58964
 
 
 
8a96a46
 
 
 
 
 
 
c1b73bf
8a96a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
264f089
8a96a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
592470d
8a96a46
 
 
 
4b58964
a39f171
4b58964
 
 
 
 
 
 
 
 
 
 
bdf4b6f
 
a39f171
 
 
 
 
 
8a96a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
592470d
8a96a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
from diffusers import (
    AutoPipelineForImage2Image,
    AutoencoderTiny,
)
import torch

try:
    import intel_extension_for_pytorch as ipex  # type: ignore
except:
    pass

import psutil
from config import Args
from pydantic import BaseModel, Field
from PIL import Image
import math
from sfast.compilers.stable_diffusion_pipeline_compiler import (
    compile,
    CompilationConfig,
)

base_model = "stabilityai/sd-turbo"
taesd_model = "madebyollin/taesd"

default_prompt = "close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux"
default_negative_prompt = "blurry, low quality, render, 3D, oversaturated"
page_content = """
<h1 class="text-3xl font-bold">Real-Time SD-Turbo</h1>
<h3 class="text-xl font-bold">Image-to-Image</h3>
<p class="text-sm">
    This demo showcases
    <a
    href="https://huggingface.co/stabilityai/sdxl-turbo"
    target="_blank"
    class="text-blue-500 underline hover:no-underline">SDXL Turbo</a>
Image to Image pipeline using
    <a
    href="https://huggingface.co/docs/diffusers/main/en/using-diffusers/sdxl_turbo"
    target="_blank"
    class="text-blue-500 underline hover:no-underline">Diffusers</a
    > with a MJPEG stream server.
</p>
<p class="text-sm text-gray-500">
    Change the prompt to generate different images, accepts <a
    href="https://github.com/damian0815/compel/blob/main/doc/syntax.md"
    target="_blank"
    class="text-blue-500 underline hover:no-underline">Compel</a
    > syntax.
</p>
"""


class Pipeline:
    class Info(BaseModel):
        name: str = "img2img"
        title: str = "Image-to-Image SDXL"
        description: str = "Generates an image from a text prompt"
        input_mode: str = "image"
        page_content: str = page_content

    class InputParams(BaseModel):
        prompt: str = Field(
            default_prompt,
            title="Prompt",
            field="textarea",
            id="prompt",
        )
        negative_prompt: str = Field(
            default_negative_prompt,
            title="Negative Prompt",
            field="textarea",
            id="negative_prompt",
            hide=True,
        )
        seed: int = Field(
            2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
        )
        steps: int = Field(
            1, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
        )
        width: int = Field(
            512, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
        )
        height: int = Field(
            512, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
        )
        strength: float = Field(
            0.5,
            min=0.25,
            max=1.0,
            step=0.001,
            title="Strength",
            field="range",
            hide=True,
            id="strength",
        )

    def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
        if args.safety_checker:
            self.pipe = AutoPipelineForImage2Image.from_pretrained(base_model)
        else:
            self.pipe = AutoPipelineForImage2Image.from_pretrained(
                base_model,
                safety_checker=None,
            )
        if args.taesd:
            self.pipe.vae = AutoencoderTiny.from_pretrained(
                taesd_model, torch_dtype=torch_dtype, use_safetensors=True
            ).to(device)

        if args.sfast:
            print("\nRunning sfast compile\n")
            from sfast.compilers.stable_diffusion_pipeline_compiler import (
                compile,
                CompilationConfig,
            )

            config = CompilationConfig.Default()
            config.enable_xformers = True
            config.enable_triton = True
            config.enable_cuda_graph = True
            self.pipe = compile(self.pipe, config=config)

        if args.onediff:
            print("\nRunning onediff compile\n")
            from onediff.infer_compiler import oneflow_compile

            self.pipe.unet = oneflow_compile(self.pipe.unet)
            self.pipe.vae.encoder = oneflow_compile(self.pipe.vae.encoder)
            self.pipe.vae.decoder = oneflow_compile(self.pipe.vae.decoder)

        self.pipe.set_progress_bar_config(disable=True)
        self.pipe.to(device=device, dtype=torch_dtype)
        if device.type != "mps":
            self.pipe.unet.to(memory_format=torch.channels_last)

        if args.torch_compile:
            print("Running torch compile")
            self.pipe.unet = torch.compile(
                self.pipe.unet, mode="reduce-overhead", fullgraph=True
            )
            self.pipe.vae = torch.compile(
                self.pipe.vae, mode="reduce-overhead", fullgraph=True
            )

            self.pipe(
                prompt="warmup",
                image=[Image.new("RGB", (768, 768))],
            )
        if args.compel:
            from compel import Compel

            self.pipe.compel_proc = Compel(
                tokenizer=self.pipe.tokenizer,
                text_encoder=self.pipe.text_encoder,
                truncate_long_prompts=True,
            )

    def predict(self, params: "Pipeline.InputParams") -> Image.Image:
        generator = torch.manual_seed(params.seed)
        steps = params.steps
        strength = params.strength
        if int(steps * strength) < 1:
            steps = math.ceil(1 / max(0.10, strength))

        prompt = params.prompt
        prompt_embeds = None
        if hasattr(self.pipe, "compel_proc"):
            prompt_embeds = self.pipe.compel_proc(
                [params.prompt, params.negative_prompt]
            )
            prompt = None

        results = self.pipe(
            image=params.image,
            prompt_embeds=prompt_embeds,
            prompt=prompt,
            negative_prompt=params.negative_prompt,
            generator=generator,
            strength=strength,
            num_inference_steps=steps,
            guidance_scale=1.1,
            width=params.width,
            height=params.height,
            output_type="pil",
        )

        nsfw_content_detected = (
            results.nsfw_content_detected[0]
            if "nsfw_content_detected" in results
            else False
        )
        if nsfw_content_detected:
            return None
        result_image = results.images[0]

        return result_image