Spaces:
Runtime error
Runtime error
File size: 1,619 Bytes
c7f097c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
from torch.utils.data import Dataset
import random
class BaseDataset(Dataset):
'''
This is the Base Datasets.
Itself does nothing and is not runnable.
Check self.get_item function to see what it should return.
'''
@staticmethod
def modify_commandline_options(parser, is_train):
return parser
def __init__(self, opt, phase='train'):
self.opt = opt
self.is_train = self.phase == 'train'
self.projection_mode = 'orthogonal' # Declare projection mode here
def __len__(self):
return 0
def get_item(self, index):
# In case of a missing file or IO error, switch to a random sample instead
try:
res = {
'name': None, # name of this subject
'b_min': None, # Bounding box (x_min, y_min, z_min) of target space
'b_max': None, # Bounding box (x_max, y_max, z_max) of target space
'samples': None, # [3, N] samples
'labels': None, # [1, N] labels
'img': None, # [num_views, C, H, W] input images
'calib': None, # [num_views, 4, 4] calibration matrix
'extrinsic': None, # [num_views, 4, 4] extrinsic matrix
'mask': None, # [num_views, 1, H, W] segmentation masks
}
return res
except:
print("Requested index %s has missing files. Using a random sample instead." % index)
return self.get_item(index=random.randint(0, self.__len__() - 1))
def __getitem__(self, index):
return self.get_item(index)
|