File size: 15,812 Bytes
c7f097c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import torch
from torch.nn import init
import torch.nn as nn
import torch.nn.functional as F
import functools

import numpy as np
from .mesh_util import *
from .sample_util import *
from .geometry import index
import cv2
from PIL import Image
from tqdm import tqdm


def reshape_multiview_tensors(image_tensor, calib_tensor):
    # Careful here! Because we put single view and multiview together,
    # the returned tensor.shape is 5-dim: [B, num_views, C, W, H]
    # So we need to convert it back to 4-dim [B*num_views, C, W, H]
    # Don't worry classifier will handle multi-view cases
    image_tensor = image_tensor.view(
        image_tensor.shape[0] * image_tensor.shape[1],
        image_tensor.shape[2],
        image_tensor.shape[3],
        image_tensor.shape[4]
    )
    calib_tensor = calib_tensor.view(
        calib_tensor.shape[0] * calib_tensor.shape[1],
        calib_tensor.shape[2],
        calib_tensor.shape[3]
    )

    return image_tensor, calib_tensor


def reshape_sample_tensor(sample_tensor, num_views):
    if num_views == 1:
        return sample_tensor
    # Need to repeat sample_tensor along the batch dim num_views times
    sample_tensor = sample_tensor.unsqueeze(dim=1)
    sample_tensor = sample_tensor.repeat(1, num_views, 1, 1)
    sample_tensor = sample_tensor.view(
        sample_tensor.shape[0] * sample_tensor.shape[1],
        sample_tensor.shape[2],
        sample_tensor.shape[3]
    )
    return sample_tensor


def gen_mesh(opt, net, cuda, data, save_path, use_octree=True):
    image_tensor = data['img'].to(device=cuda)
    calib_tensor = data['calib'].to(device=cuda)

    net.filter(image_tensor)

    b_min = data['b_min']
    b_max = data['b_max']
    try:
        save_img_path = save_path[:-4] + '.png'
        save_img_list = []
        for v in range(image_tensor.shape[0]):
            save_img = (np.transpose(image_tensor[v].detach().cpu().numpy(), (1, 2, 0)) * 0.5 + 0.5)[:, :, ::-1] * 255.0
            save_img_list.append(save_img)
        save_img = np.concatenate(save_img_list, axis=1)
        Image.fromarray(np.uint8(save_img[:,:,::-1])).save(save_img_path)

        verts, faces, _, _ = reconstruction(
            net, cuda, calib_tensor, opt.resolution, b_min, b_max, use_octree=use_octree)
        verts_tensor = torch.from_numpy(verts.T).unsqueeze(0).to(device=cuda).float()
        xyz_tensor = net.projection(verts_tensor, calib_tensor[:1])
        uv = xyz_tensor[:, :2, :]
        color = index(image_tensor[:1], uv).detach().cpu().numpy()[0].T
        color = color * 0.5 + 0.5
        save_obj_mesh_with_color(save_path, verts, faces, color)
    except Exception as e:
        print(e)
        print('Can not create marching cubes at this time.')

def gen_mesh_color(opt, netG, netC, cuda, data, save_path, use_octree=True):
    image_tensor = data['img'].to(device=cuda)
    calib_tensor = data['calib'].to(device=cuda)

    netG.filter(image_tensor)
    netC.filter(image_tensor)
    netC.attach(netG.get_im_feat())

    b_min = data['b_min']
    b_max = data['b_max']
    try:
        save_img_path = save_path[:-4] + '.png'
        save_img_list = []
        for v in range(image_tensor.shape[0]):
            save_img = (np.transpose(image_tensor[v].detach().cpu().numpy(), (1, 2, 0)) * 0.5 + 0.5)[:, :, ::-1] * 255.0
            save_img_list.append(save_img)
        save_img = np.concatenate(save_img_list, axis=1)
        Image.fromarray(np.uint8(save_img[:,:,::-1])).save(save_img_path)

        verts, faces, _, _ = reconstruction(
            netG, cuda, calib_tensor, opt.resolution, b_min, b_max, use_octree=use_octree)

        # Now Getting colors
        verts_tensor = torch.from_numpy(verts.T).unsqueeze(0).to(device=cuda).float()
        verts_tensor = reshape_sample_tensor(verts_tensor, opt.num_views)

        color = np.zeros(verts.shape)
        interval = opt.num_sample_color
        for i in range(len(color) // interval):
            left = i * interval
            right = i * interval + interval
            if i == len(color) // interval - 1:
                right = -1
            netC.query(verts_tensor[:, :, left:right], calib_tensor)
            rgb = netC.get_preds()[0].detach().cpu().numpy() * 0.5 + 0.5
            color[left:right] = rgb.T

        save_obj_mesh_with_color(save_path, verts, faces, color)
    except Exception as e:
        print(e)
        print('Can not create marching cubes at this time.')

def adjust_learning_rate(optimizer, epoch, lr, schedule, gamma):
    """Sets the learning rate to the initial LR decayed by schedule"""
    if epoch in schedule:
        lr *= gamma
        for param_group in optimizer.param_groups:
            param_group['lr'] = lr
    return lr


def compute_acc(pred, gt, thresh=0.5):
    '''
    return:
        IOU, precision, and recall
    '''
    with torch.no_grad():
        vol_pred = pred > thresh
        vol_gt = gt > thresh

        union = vol_pred | vol_gt
        inter = vol_pred & vol_gt

        true_pos = inter.sum().float()

        union = union.sum().float()
        if union == 0:
            union = 1
        vol_pred = vol_pred.sum().float()
        if vol_pred == 0:
            vol_pred = 1
        vol_gt = vol_gt.sum().float()
        if vol_gt == 0:
            vol_gt = 1
        return true_pos / union, true_pos / vol_pred, true_pos / vol_gt


def calc_error(opt, net, cuda, dataset, num_tests):
    if num_tests > len(dataset):
        num_tests = len(dataset)
    with torch.no_grad():
        erorr_arr, IOU_arr, prec_arr, recall_arr = [], [], [], []
        for idx in tqdm(range(num_tests)):
            data = dataset[idx * len(dataset) // num_tests]
            # retrieve the data
            image_tensor = data['img'].to(device=cuda)
            calib_tensor = data['calib'].to(device=cuda)
            sample_tensor = data['samples'].to(device=cuda).unsqueeze(0)
            if opt.num_views > 1:
                sample_tensor = reshape_sample_tensor(sample_tensor, opt.num_views)
            label_tensor = data['labels'].to(device=cuda).unsqueeze(0)

            res, error = net.forward(image_tensor, sample_tensor, calib_tensor, labels=label_tensor)

            IOU, prec, recall = compute_acc(res, label_tensor)

            # print(
            #     '{0}/{1} | Error: {2:06f} IOU: {3:06f} prec: {4:06f} recall: {5:06f}'
            #         .format(idx, num_tests, error.item(), IOU.item(), prec.item(), recall.item()))
            erorr_arr.append(error.item())
            IOU_arr.append(IOU.item())
            prec_arr.append(prec.item())
            recall_arr.append(recall.item())

    return np.average(erorr_arr), np.average(IOU_arr), np.average(prec_arr), np.average(recall_arr)

def calc_error_color(opt, netG, netC, cuda, dataset, num_tests):
    if num_tests > len(dataset):
        num_tests = len(dataset)
    with torch.no_grad():
        error_color_arr = []

        for idx in tqdm(range(num_tests)):
            data = dataset[idx * len(dataset) // num_tests]
            # retrieve the data
            image_tensor = data['img'].to(device=cuda)
            calib_tensor = data['calib'].to(device=cuda)
            color_sample_tensor = data['color_samples'].to(device=cuda).unsqueeze(0)

            if opt.num_views > 1:
                color_sample_tensor = reshape_sample_tensor(color_sample_tensor, opt.num_views)

            rgb_tensor = data['rgbs'].to(device=cuda).unsqueeze(0)

            netG.filter(image_tensor)
            _, errorC = netC.forward(image_tensor, netG.get_im_feat(), color_sample_tensor, calib_tensor, labels=rgb_tensor)

            # print('{0}/{1} | Error inout: {2:06f} | Error color: {3:06f}'
            #       .format(idx, num_tests, errorG.item(), errorC.item()))
            error_color_arr.append(errorC.item())

    return np.average(error_color_arr)


def conv3x3(in_planes, out_planes, strd=1, padding=1, bias=False):
    "3x3 convolution with padding"
    return nn.Conv2d(in_planes, out_planes, kernel_size=3,
                     stride=strd, padding=padding, bias=bias)

def init_weights(net, init_type='normal', init_gain=0.02):
    """Initialize network weights.

    Parameters:
        net (network)   -- network to be initialized
        init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
        init_gain (float)    -- scaling factor for normal, xavier and orthogonal.

    We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might
    work better for some applications. Feel free to try yourself.
    """

    def init_func(m):  # define the initialization function
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
            if init_type == 'normal':
                init.normal_(m.weight.data, 0.0, init_gain)
            elif init_type == 'xavier':
                init.xavier_normal_(m.weight.data, gain=init_gain)
            elif init_type == 'kaiming':
                init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
            elif init_type == 'orthogonal':
                init.orthogonal_(m.weight.data, gain=init_gain)
            else:
                raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
            if hasattr(m, 'bias') and m.bias is not None:
                init.constant_(m.bias.data, 0.0)
        elif classname.find(
                'BatchNorm2d') != -1:  # BatchNorm Layer's weight is not a matrix; only normal distribution applies.
            init.normal_(m.weight.data, 1.0, init_gain)
            init.constant_(m.bias.data, 0.0)

    print('initialize network with %s' % init_type)
    net.apply(init_func)  # apply the initialization function <init_func>


def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]):
    """Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights
    Parameters:
        net (network)      -- the network to be initialized
        init_type (str)    -- the name of an initialization method: normal | xavier | kaiming | orthogonal
        gain (float)       -- scaling factor for normal, xavier and orthogonal.
        gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2

    Return an initialized network.
    """
    if len(gpu_ids) > 0:
        assert (torch.cuda.is_available())
        net.to(gpu_ids[0])
        net = torch.nn.DataParallel(net, gpu_ids)  # multi-GPUs
    init_weights(net, init_type, init_gain=init_gain)
    return net


def imageSpaceRotation(xy, rot):
    '''
    args:
        xy: (B, 2, N) input
        rot: (B, 2) x,y axis rotation angles

    rotation center will be always image center (other rotation center can be represented by additional z translation)
    '''
    disp = rot.unsqueeze(2).sin().expand_as(xy)
    return (disp * xy).sum(dim=1)


def cal_gradient_penalty(netD, real_data, fake_data, device, type='mixed', constant=1.0, lambda_gp=10.0):
    """Calculate the gradient penalty loss, used in WGAN-GP paper https://arxiv.org/abs/1704.00028

    Arguments:
        netD (network)              -- discriminator network
        real_data (tensor array)    -- real images
        fake_data (tensor array)    -- generated images from the generator
        device (str)                -- GPU / CPU: from torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu')
        type (str)                  -- if we mix real and fake data or not [real | fake | mixed].
        constant (float)            -- the constant used in formula ( | |gradient||_2 - constant)^2
        lambda_gp (float)           -- weight for this loss

    Returns the gradient penalty loss
    """
    if lambda_gp > 0.0:
        if type == 'real':  # either use real images, fake images, or a linear interpolation of two.
            interpolatesv = real_data
        elif type == 'fake':
            interpolatesv = fake_data
        elif type == 'mixed':
            alpha = torch.rand(real_data.shape[0], 1)
            alpha = alpha.expand(real_data.shape[0], real_data.nelement() // real_data.shape[0]).contiguous().view(
                *real_data.shape)
            alpha = alpha.to(device)
            interpolatesv = alpha * real_data + ((1 - alpha) * fake_data)
        else:
            raise NotImplementedError('{} not implemented'.format(type))
        interpolatesv.requires_grad_(True)
        disc_interpolates = netD(interpolatesv)
        gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolatesv,
                                        grad_outputs=torch.ones(disc_interpolates.size()).to(device),
                                        create_graph=True, retain_graph=True, only_inputs=True)
        gradients = gradients[0].view(real_data.size(0), -1)  # flat the data
        gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant) ** 2).mean() * lambda_gp  # added eps
        return gradient_penalty, gradients
    else:
        return 0.0, None

def get_norm_layer(norm_type='instance'):
    """Return a normalization layer
    Parameters:
        norm_type (str) -- the name of the normalization layer: batch | instance | none
    For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev).
    For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics.
    """
    if norm_type == 'batch':
        norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True)
    elif norm_type == 'instance':
        norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
    elif norm_type == 'group':
        norm_layer = functools.partial(nn.GroupNorm, 32)
    elif norm_type == 'none':
        norm_layer = None
    else:
        raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
    return norm_layer

class Flatten(nn.Module):
    def forward(self, input):
        return input.view(input.size(0), -1)

class ConvBlock(nn.Module):
    def __init__(self, in_planes, out_planes, norm='batch'):
        super(ConvBlock, self).__init__()
        self.conv1 = conv3x3(in_planes, int(out_planes / 2))
        self.conv2 = conv3x3(int(out_planes / 2), int(out_planes / 4))
        self.conv3 = conv3x3(int(out_planes / 4), int(out_planes / 4))

        if norm == 'batch':
            self.bn1 = nn.BatchNorm2d(in_planes)
            self.bn2 = nn.BatchNorm2d(int(out_planes / 2))
            self.bn3 = nn.BatchNorm2d(int(out_planes / 4))
            self.bn4 = nn.BatchNorm2d(in_planes)
        elif norm == 'group':
            self.bn1 = nn.GroupNorm(32, in_planes)
            self.bn2 = nn.GroupNorm(32, int(out_planes / 2))
            self.bn3 = nn.GroupNorm(32, int(out_planes / 4))
            self.bn4 = nn.GroupNorm(32, in_planes)
        
        if in_planes != out_planes:
            self.downsample = nn.Sequential(
                self.bn4,
                nn.ReLU(True),
                nn.Conv2d(in_planes, out_planes,
                          kernel_size=1, stride=1, bias=False),
            )
        else:
            self.downsample = None

    def forward(self, x):
        residual = x

        out1 = self.bn1(x)
        out1 = F.relu(out1, True)
        out1 = self.conv1(out1)

        out2 = self.bn2(out1)
        out2 = F.relu(out2, True)
        out2 = self.conv2(out2)

        out3 = self.bn3(out2)
        out3 = F.relu(out3, True)
        out3 = self.conv3(out3)

        out3 = torch.cat((out1, out2, out3), 1)

        if self.downsample is not None:
            residual = self.downsample(residual)

        out3 += residual

        return out3