Spaces:
Running
Running
File size: 36,028 Bytes
f64e380 b1e8f11 f64e380 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 |
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width">
<title>OpenAI CLIP Image Search in JavaScript (Using ONNX Web Runtime)</title>
<script src="enable-threads.js"></script>
<script src="./vips/vips.js"></script>
</head>
<body>
<style>
body * {
font-family: monospace;
}
</style>
<script src="https://cdn.jsdelivr.net/npm/onnxruntime-web@1.12.0/dist/ort.js"></script>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@3.17.0/dist/tf.min.js"></script> <!-- NOTE: tfjs is currently only used for image preprocessing stuff. -->
<div>
<h1 style="font-size:1rem;">Sort/search images using OpenAI's CLIP in your browser</h1>
<p>This web app sorts/searches through images in a directory on your computer using OpenAI's CLIP model, and the new File System Access API. <a href="https://github.com/josephrocca/clip-image-sorter">Here's the Github repo</a> for this web app, and <a href="https://github.com/josephrocca/openai-clip-js">here's the Github repo</a> for the web-ported CLIP models. Feel free to open an issue or <a href="https://twitter.com/rocca27" target="_blank">DM me on Twitter</a> if you have any questions about this demo.</p>
<p>All processing happens in your browser, on your device - i.e. your images are <b>not</b> uploaded to a server for processing.</p>
<p id="browserCompatibilityWarning" style="padding:0.25rem; background:rgb(255, 227, 160); display:none;"><b>Note</b>: This page uses new browser features (File System Access API, and credentialless COEP) that are currently only available in some browsers. As of writing, it works in Chrome, Edge and Brave. Other browsers like Firefox and Safari are often a bit slower in implementing cutting-edge features.</p>
<script>
if(Date.now() < 1648725949710+1000*60*60*24*365) { // display until start of April 2023
browserCompatibilityWarning.style.display = "";
}
</script>
<hr>
<div id="modelNameSelectCtn" style="padding:0.5rem; background:lightgrey; margin:0.5rem;">
<b>Step 1:</b> Choose model:
<select onchange="window.MODEL_NAME=this.value;">
<option value="clip_vit_32">CLIP ViT-B/32 (recommended)</option>
<option value="clip_vit_32_uint8">CLIP ViT-B/32 (quantized - inaccurate embeddings)</option>
<option value="lit_b16b">LiT B16B</option>
</select>
</div>
<div id="initCtnEl" style="padding:0.5rem; background:lightgrey; margin:0.5rem;">
<b>Step 2:</b> Download and initialize the models.
<br>
Download image model: <progress id="imageModelLoadingProgressBarEl" value="0"></progress> <span id="imageModelLoadingMbEl"></span>
<br>
Download text model: <progress id="textModelLoadingProgressBarEl" value="0"></progress> <span id="textModelLoadingMbEl"></span>
<br>
Initialize workers: <progress id="workerInitProgressBarEl" value="0"></progress>
<div style="display:none;"> <!-- more workers (dividing threads between them) doesn't seem to make things faster -->
Number of image embedding workers/threads: <input id="numThreadsEl" type="range" min="1" max="4" value="1" oninput="numThreadsDisplayEl.textContent=this.value"> <span id="numThreadsDisplayEl"></span> <script>numThreadsEl.max = navigator.hardwareConcurrency; numThreadsDisplayEl.textContent=numThreadsEl.value;</script>
</div>
<br>
<button id="initWorkersBtn" onclick="modelNameSelectCtn.style.pointerEvents='none'; modelNameSelectCtn.style.opacity=0.5; initializeWorkers()">initialize workers</button>
</div>
<div id="pickDirCtnEl" style="opacity:0.5; pointer-events:none; padding:0.5rem; background:lightgrey; margin:0.5rem;">
<b>Step 3:</b> Pick a directory of images (images in subdirectories will be included).
<br>
<button id="pickDirectoryBtn" onclick="pickDirectory({source:'local'})">pick directory</button> or <button id="useRedditImagesBtn" onclick="pickDirectory({source:'reddit'})">use ~200k reddit images</button> (remove nsfw:<input id="removeRedditNsfwEl" type="checkbox" checked>)
<br>
<div id="redditLoadProgressCtn" style="display:none;">Download progress: <progress id="redditProgressBarEl" value="0"></progress> <span id="redditProgressMbEl"></span></div>
<div id="existingEmbeddingsProgressCtn" style="display:none;">Loading existing embeddings: <span id="existingEmbeddingsLoadedEl">none</span></div>
</div>
<div id="computeEmbeddingsCtnEl" style="opacity:0.5; pointer-events:none; padding:0.5rem; background:lightgrey; margin:0.5rem;">
<b>Step 4:</b> Compute image embeddings. <span style="opacity:0.5;">(they will be saved as <ModelName>_embeddings.tsv in the selected directory)</span>
<br>
<button id="computeEmbeddingsBtn" onclick="computeImageEmbeddings(); this.disabled=true;">compute image embeddings</button>
<br>
<span id="computeEmbeddingsProgressEl">0</span> images embedded (<span id="computeEmbeddingsSpeedEl">?</span> ms per image) <span id="preexistingEmbeddingsEl"></span>
</div>
<div id="existingEmbeddingsFoundCtnEl" style="display:none; padding:0.5rem; background:lightgrey; margin:0.5rem;">
<b>Step 5:</b> <b>Existing embeddings found.</b>
<br>
Only needed if you've added or changed images: <button onclick="existingEmbeddingsFoundCtnEl.style.display='none'; computeEmbeddingsCtnEl.style.display=''; disableCtn(searchCtnEl); computeEmbeddingsBtn.click()">(re)compute image embeddings</button>
<input id="onlyEmbedNewImagesCheckbox" type="checkbox" checked> Only new images?
</div>
<div id="searchCtnEl" style="opacity:0.5; pointer-events:none; padding:0.5rem; background:lightgrey; margin:0.5rem;">
<b>Step 6:</b> Enter a search term.
<br>
<input id="searchTextEl" style="width:300px;" value="" placeholder="Enter search text here..." onkeyup="if(event.which==13) searchSort()">
<button id="searchBtn" onclick="searchSort()">search</button>
</div>
</div>
<hr>
<b>Results</b> <span style="opacity:0.5;">(hover for cosine similarities)</span>
<div id="resultsEl" style="margin-top:1rem; min-height:100vh;"><span style="opacity:0.5;">Click the search button to compute the results.</span></div>
<script>
/////////////
// STEP 1 //
/////////////
window.MODEL_NAME = "clip_vit_32";
window.modelData = {
clip_vit_32: {
image: {
modelUrl: (quantized) => `https://huggingface.co/rocca/openai-clip-js/resolve/main/clip-image-vit-32-${quantized ? "uint8" : "float32"}.onnx`,
embed: async function(blob, session) {
let rgbData = await getRgbData(blob);
const feeds = {input: new ort.Tensor('float32', rgbData, [1,3,224,224])};
const results = await session.run(feeds);
const embedVec = results["output"].data; // Float32Array
return embedVec;
}
},
text: {
modelUrl: (quantized) => `https://huggingface.co/rocca/openai-clip-js/resolve/main/clip-text-vit-32-${quantized ? "uint8" : "float32-int32"}.onnx`,
embed: async function(text, session) {
if(!window.textTokenizerClip) {
let Tokenizer = (await import("https://deno.land/x/clip_bpe@v0.0.6/mod.js")).default;
window.textTokenizerClip = new Tokenizer();
}
let textTokens = window.textTokenizerClip.encodeForCLIP(text);
textTokens = Int32Array.from(textTokens);
const feeds = {input: new ort.Tensor('int32', textTokens, [1, 77])};
const results = await session.run(feeds);
return [...results["output"].data];
},
}
},
lit_b16b: {
image: {
modelUrl: () => 'https://huggingface.co/rocca/lit-web/resolve/main/embed_images.onnx',
embed: async function(blob, session) {
// TODO: Maybe remove tf from this code so you can remove the whole tfjs dependency
blob = await bicubicResizeAndCenterCrop(blob);
let inputImg = new Image();
await new Promise(r => inputImg.onload=r, inputImg.src=URL.createObjectURL(blob));
let img = tf.browser.fromPixels(inputImg);
img = tf.sub(tf.div(tf.expandDims(img), 127.5), 1);
let float32RgbData = img.dataSync();
const feeds = {'images': new ort.Tensor('float32', float32RgbData, [1,224,224,3])};
const results = await session.run(feeds);
return results["Identity_1:0"].data;
},
},
text: {
modelUrl: () => 'https://huggingface.co/rocca/lit-web/resolve/main/embed_text_tokens.onnx',
embed: async function(text, session) {
if(!window.bertTextTokenizerLit) {
window.bertTextTokenizerLit = await import("./bert-text-tokenizer.js").then(m => new m.BertTokenizer());
await window.bertTextTokenizerLit.load();
}
let textTokens = window.bertTextTokenizerLit.tokenize(text);
textTokens.unshift(101); // manually put CLS token at the start
textTokens.length = 16;
textTokens = [...textTokens.slice(0, 16)].map(e => e == undefined ? 0 : e); // pad with zeros to length of 16
textTokens = Int32Array.from(textTokens);
const feeds = {'text_tokens': new ort.Tensor('int32', textTokens, [1,16])};
const results = await session.run(feeds);
return [...results["Identity_1:0"].data];
}
}
},
};
let imageWorkers = [];
let onnxImageSessions = [];
let onnxTextSession;
let textTokenizer;
async function initializeWorkers() {
initWorkersBtn.disabled = true;
numThreadsEl.disabled = true;
let useQuantizedModel = false;
if(MODEL_NAME.endsWith("_uint8")) {
MODEL_NAME = MODEL_NAME.replace(/_uint8$/g, "");
useQuantizedModel = true;
}
let imageOnnxBlobPromise = downloadBlobWithProgress(window.modelData[MODEL_NAME].image.modelUrl(useQuantizedModel), function(e) {
let ratio = e.loaded / e.total;
imageModelLoadingProgressBarEl.value = ratio;
imageModelLoadingMbEl.innerHTML = Math.round(ratio*e.total/1e6)+" MB";
});
let textOnnxBlobPromise = downloadBlobWithProgress(window.modelData[MODEL_NAME].text.modelUrl(useQuantizedModel), function(e) {
let ratio = e.loaded / e.total;
textModelLoadingProgressBarEl.value = ratio;
textModelLoadingMbEl.innerHTML = Math.round(ratio*e.total/1e6)+" MB";
});
let [imageOnnxBlob, textOnnxBlob] = await Promise.all([imageOnnxBlobPromise, textOnnxBlobPromise])
let imageModelUrl = window.URL.createObjectURL(imageOnnxBlob);
let textModelUrl = window.URL.createObjectURL(textOnnxBlob);
let numImageWorkers = Number(numThreadsEl.value);
// Inference latency is about 5x faster with wasm threads, but this requires these headers: https://web.dev/coop-coep/ I'm using this as a hack (in enable-threads.js) since Github pages doesn't allow setting headers: https://github.com/gzuidhof/coi-serviceworker
if(self.crossOriginIsolated) {
ort.env.wasm.numThreads = Math.ceil(navigator.hardwareConcurrency / numImageWorkers) / 2; // divide by two to utilise only half the CPU's threads because trying to use all the cpu's threads actually makes it slower
}
workerInitProgressBarEl.max = numImageWorkers + 2; // +2 because of text model and bpe library
let imageModelExecutionProviders = ["wasm"]; // webgl is not compatible with this model (need to tweak conversion data/op types)
for(let i = 0; i < numImageWorkers; i++) {
let session = await ort.InferenceSession.create(imageModelUrl, { executionProviders: imageModelExecutionProviders });
onnxImageSessions.push(session);
imageWorkers.push({
session,
busy: false,
});
workerInitProgressBarEl.value = Number(workerInitProgressBarEl.value) + 1;
}
console.log("Image model loaded.");
onnxTextSession = await ort.InferenceSession.create(textModelUrl, { executionProviders: ["wasm"] }); // webgl is not compatible with this model (need to tweak conversion data/op types)
console.log("Text model loaded.");
workerInitProgressBarEl.value = Number(workerInitProgressBarEl.value) + 1;
window.URL.revokeObjectURL(imageModelUrl);
window.URL.revokeObjectURL(textModelUrl);
window.vips = await Vips(); // for bicubicly resizing images (since that's what CLIP expects)
window.vips.EMBIND_AUTOMATIC_DELETELATER = false;
workerInitProgressBarEl.value = Number(workerInitProgressBarEl.value) + 1;
disableCtn(initCtnEl);
enableCtn(pickDirCtnEl);
}
/////////////
// STEP 2 //
/////////////
let directoryHandle;
let embeddingsFileHandle;
let embeddings;
let dataSource;
async function pickDirectory(opts={}) {
dataSource = opts.source;
if(dataSource === "local") {
if(!window.showDirectoryPicker) return alert("Your browser does not support some modern features (specifically, File System Access API) required to use this web app. Please try updating your browser, or switching to Chrome, Edge, or Brave.");
directoryHandle = await window.showDirectoryPicker();
embeddingsFileHandle = await directoryHandle.getFileHandle(`${window.MODEL_NAME}_embeddings.tsv`, {create:true});
pickDirectoryBtn.disabled = true;
useRedditImagesBtn.disabled = true;
pickDirectoryBtn.textContent = "Loading...";
}
let redditEmbeddingsBlob;
if(dataSource === "reddit") {
if(window.MODEL_NAME !== "clip_vit_32") return alert("Sorry, there are only pre-computed Reddit image embeddings for the CLIP ViT-B/32 model at the moment.");
if(!removeRedditNsfwEl.checked && !confirm("Are you sure you'd like to see NSFW Reddit images?")) return;
if(removeRedditNsfwEl.checked) alert("Note that NSFW images are filtered from Reddit using CLIP, and CLIP can make mistakes, so some NSFW images may still be shown.");
pickDirectoryBtn.disabled = true;
useRedditImagesBtn.disabled = true;
useRedditImagesBtn.textContent = "Loading...";
redditLoadProgressCtn.style.display = "";
redditEmbeddingsBlob = await downloadBlobWithProgress("https://huggingface.co/datasets/rocca/top-reddit-posts/resolve/main/clip_embeddings_top_50_images_per_subreddit.tsv.gz", function(e) {
let ratio = e.loaded / e.total;
redditProgressBarEl.value = ratio;
redditProgressMbEl.innerHTML = Math.round(ratio*213)+" MB";
});
}
try {
existingEmbeddingsProgressCtn.style.display = "";
embeddings = {};
let file, opts;
if(dataSource === "local") {
file = await embeddingsFileHandle.getFile();
opts = {};
}
if(dataSource === "reddit") {
file = redditEmbeddingsBlob;
opts = {decompress:"gzip"};
}
let i = 0;
for await (let line of makeTextFileLineIterator(file, opts)) {
if(!line || !line.trim()) continue; // <-- to skip final new line (not sure if this is needed)
let [filePath, embeddingVec] = line.split("\t");
embeddings[filePath] = JSON.parse(embeddingVec);
i++;
if(i % 1000 === 0) {
existingEmbeddingsLoadedEl.innerHTML = i;
await sleep(10);
}
}
} catch(e) {
embeddings = undefined;
console.log("No existing embedding found, or the embeddings file was corrupted:", e);
existingEmbeddingsProgressCtn.style.display = "none";
}
pickDirectoryBtn.textContent = "Done.";
useRedditImagesBtn.textContent = "Done.";
disableCtn(pickDirCtnEl);
enableCtn(computeEmbeddingsCtnEl);
enableCtn(searchCtnEl);
if(embeddings && Object.keys(embeddings).length > 0) {
computeEmbeddingsCtnEl.style.display = "none";
existingEmbeddingsFoundCtnEl.style.display = "";
}
if(dataSource === "reddit") {
disableCtn(existingEmbeddingsFoundCtnEl);
}
}
/////////////
// STEP 3 //
/////////////
let totalEmbeddingsCount = 0;
let imagesEmbedded;
let recentEmbeddingTimes = []; // how long each embed took in ms, newest at end
let recomputeAllEmbeddings;
let imagesBeingProcessedNow = 0;
let needToSaveEmbeddings = false;
async function computeImageEmbeddings() {
imagesEmbedded = 0;
totalEmbeddingsCount = Object.keys(embeddings).length;
recomputeAllEmbeddings = !onlyEmbedNewImagesCheckbox.checked;
let gotSomeExistingEmbeddings = totalEmbeddingsCount > 0;
if(onlyEmbedNewImagesCheckbox.checked && gotSomeExistingEmbeddings) {
preexistingEmbeddingsEl.innerHTML = `(loaded ${Object.keys(embeddings).length} existing embeddings)`;
}
if(recomputeAllEmbeddings || !gotSomeExistingEmbeddings) {
embeddings = {}; // <-- maps file path (relative to top/selected directory) to embedding
}
try {
await recursivelyProcessImagesInDir(directoryHandle);
await saveEmbeddings();
} catch(e) {
console.error(e);
alert(e.message);
}
disableCtn(computeEmbeddingsCtnEl);
enableCtn(searchCtnEl);
}
async function recursivelyProcessImagesInDir(dirHandle, currentPath="") {
for await (let [name, handle] of dirHandle) {
const {kind} = handle;
let path = `${currentPath}/${name}`;
if (handle.kind === 'directory') {
await recursivelyProcessImagesInDir(handle, path);
} else {
let isImage = /\.(png|jpg|jpeg|webp)$/.test(path);
if(!isImage) continue;
let alreadyGotEmbedding = !!embeddings[path];
if(alreadyGotEmbedding && !recomputeAllEmbeddings) continue;
if(needToSaveEmbeddings) {
await saveEmbeddings();
needToSaveEmbeddings = false;
}
while(imageWorkers.filter(w => !w.busy).length === 0) await sleep(1);
let worker = imageWorkers.filter(w => !w.busy)[0];
worker.busy = true;
imagesBeingProcessedNow++;
(async function() {
let startTime = Date.now();
let blob = await handle.getFile();
const embedVec = await modelData[MODEL_NAME].image.embed(blob, worker.session);
embeddings[path] = [...embedVec];
worker.busy = false;
imagesEmbedded++;
totalEmbeddingsCount++;
computeEmbeddingsProgressEl.innerHTML = imagesEmbedded;
let saveInterval = totalEmbeddingsCount > 50_000 ? 10_000 : 1000; // since saves take longer if there are lots of embeddings
if(imagesEmbedded % saveInterval === 0) {
needToSaveEmbeddings = true;
}
recentEmbeddingTimes.push(Date.now()-startTime);
if(recentEmbeddingTimes.length > 100) recentEmbeddingTimes = recentEmbeddingTimes.slice(-50);
if(recentEmbeddingTimes.length > 10) computeEmbeddingsSpeedEl.innerHTML = Math.round(recentEmbeddingTimes.slice(-20).reduce((a,v) => a+v, 0)/20);
imagesBeingProcessedNow--;
})();
}
}
while(imagesBeingProcessedNow > 0) await sleep(10);
}
/////////////
// STEP 4 //
/////////////
async function searchSort() {
searchBtn.disabled = true;
if(dataSource === "local") {
for(let imgEl of [...document.querySelectorAll("img")]) {
URL.revokeObjectURL(imgEl.src);
}
}
resultsEl.innerHTML = "Loading...";
await sleep(50);
let searchTextEmbedding = await modelData[MODEL_NAME].text.embed(searchTextEl.value, onnxTextSession);
let similarities = {};
for(let [path, embedding] of Object.entries(embeddings)) {
similarities[path] = cosineSimilarity(searchTextEmbedding, embedding);
}
let similarityEntries = Object.entries(similarities).sort((a,b) => b[1]-a[1]).slice(0, 5000);
if(dataSource === "reddit" && removeRedditNsfwEl.checked) {
let nsfwTextEmbedding = await modelData[MODEL_NAME].text.embed(atob('cG9ybiBuYWtlZCBwZW5pcyB2YWdpbmEgbnVkZSBzZXggZGljayBwdXNzeSBzZXh1YWwgcG9ybm9ncmFwaGljIGFzcyBib29icw=='), onnxTextSession); // nsfw words (hidden with `btoa`)
let nsfwSimilarities = {};
for(let [path, similarity] of similarityEntries) {
let embedding = embeddings[path];
nsfwSimilarities[path] = cosineSimilarity(nsfwTextEmbedding, embedding);
}
similarityEntries = similarityEntries.filter(e => nsfwSimilarities[e[0]] < 0.2093);
}
let resultHtml = "";
let numResults = 0;
for(let [path, score] of similarityEntries.slice(0, 500)) {
if(dataSource === "local") {
let handle = await getFileHandleByPath(path);
let url = URL.createObjectURL(await handle.getFile());
resultHtml += `<img src="${url}" style="max-height:400px;" title="${path}: ${score}" loading="lazy"/>`;
}
if(dataSource === "reddit") {
let imageUrl = `https://i.redd.it/${path.split("__")[1]}`;
let postUrl = `https://reddit.com/comments/${path.split("__")[0].split("/")[1]}`;
resultHtml += `<a href="${postUrl}" target="_blank"><img src="${imageUrl}" onload="this.style.height='';this.style.width='';this.style.border='';" style="max-height:400px; height:300px; width:300px; border:1px solid black;" title="${path}: ${score}" loading="lazy"/></a>`;
}
numResults++;
}
if(!resultHtml) {
resultsEl.innerHTML = "No results found after filtering NSFW.";
} else {
resultsEl.innerHTML = resultHtml;
}
searchBtn.disabled = false;
}
/////////////////////////////
// FUNCTIONS / UTILITIES //
/////////////////////////////
async function getFileHandleByPath(path) {
let handle = directoryHandle;
let chunks = path.split("/").slice(1);
for(let i = 0; i < chunks.length; i++) {
let chunk = chunks[i];
if(i === chunks.length-1) {
handle = await handle.getFileHandle(chunk);
} else {
handle = await handle.getDirectoryHandle(chunk);
}
}
return handle;
}
async function getRgbData(blob) {
// let blob = await fetch(imgUrl, {referrer:""}).then(r => r.blob());
let resizedBlob = await bicubicResizeAndCenterCrop(blob);
let img = await createImageBitmap(resizedBlob);
let canvas = new OffscreenCanvas(224, 224);
let ctx = canvas.getContext("2d");
ctx.drawImage(img, 0, 0);
let imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
let rgbData = [[], [], []]; // [r, g, b]
// remove alpha and put into correct shape:
let d = imageData.data;
for(let i = 0; i < d.length; i += 4) {
let x = (i/4) % canvas.width;
let y = Math.floor((i/4) / canvas.width)
if(!rgbData[0][y]) rgbData[0][y] = [];
if(!rgbData[1][y]) rgbData[1][y] = [];
if(!rgbData[2][y]) rgbData[2][y] = [];
rgbData[0][y][x] = d[i+0]/255;
rgbData[1][y][x] = d[i+1]/255;
rgbData[2][y][x] = d[i+2]/255;
// From CLIP repo: Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
rgbData[0][y][x] = (rgbData[0][y][x] - 0.48145466) / 0.26862954;
rgbData[1][y][x] = (rgbData[1][y][x] - 0.4578275) / 0.26130258;
rgbData[2][y][x] = (rgbData[2][y][x] - 0.40821073) / 0.27577711;
}
rgbData = Float32Array.from(rgbData.flat().flat());
return rgbData;
}
async function bicubicResizeAndCenterCrop(blob) {
let im1 = vips.Image.newFromBuffer(await blob.arrayBuffer());
// Resize so smallest side is 224px:
const scale = 224 / Math.min(im1.height, im1.width);
let im2 = im1.resize(scale, { kernel: vips.Kernel.cubic });
// crop to 224x224:
let left = (im2.width - 224) / 2;
let top = (im2.height - 224) / 2;
let im3 = im2.crop(left, top, 224, 224)
let outBuffer = new Uint8Array(im3.writeToBuffer('.png'));
im1.delete(), im2.delete(), im3.delete();
return new Blob([outBuffer], { type: 'image/png' });
}
function downloadBlobWithProgress(url, onProgress) {
return new Promise((res, rej) => {
var blob;
var xhr = new XMLHttpRequest();
xhr.open('GET', url, true);
xhr.responseType = 'arraybuffer';
xhr.onload = function(e) {
blob = new Blob([this.response]);
};
xhr.onprogress = onProgress;
xhr.onloadend = function(e){
res(blob);
}
xhr.send();
});
}
async function saveEmbeddings(opts={}) {
let writable = await embeddingsFileHandle.createWritable();
let textBatch = "";
let i = 0;
for(let [filePath, embeddingVec] of Object.entries(embeddings)) {
let vecString = opts.compress ? JSON.stringify(embeddingVec.map(n => n.toFixed(3))).replace(/"/g, "") : JSON.stringify(embeddingVec);
textBatch += `${filePath}\t${vecString}\n`;
i++;
if(i % 1000 === 0) {
await writable.write(textBatch);
textBatch = "";
}
}
await writable.write(textBatch);
await writable.close();
}
// Tweaked version of example from here: https://developer.mozilla.org/en-US/docs/Web/API/ReadableStreamDefaultReader/read
async function* makeTextFileLineIterator(blob, opts={}) {
const utf8Decoder = new TextDecoder("utf-8");
let stream = await blob.stream();
if(opts.decompress === "gzip") stream = stream.pipeThrough(new DecompressionStream("gzip"));
let reader = stream.getReader();
let {value: chunk, done: readerDone} = await reader.read();
chunk = chunk ? utf8Decoder.decode(chunk, {stream: true}) : "";
let re = /\r\n|\n|\r/gm;
let startIndex = 0;
while (true) {
let result = re.exec(chunk);
if (!result) {
if (readerDone) {
break;
}
let remainder = chunk.substr(startIndex);
({value: chunk, done: readerDone} = await reader.read());
chunk = remainder + (chunk ? utf8Decoder.decode(chunk, {stream: true}) : "");
startIndex = re.lastIndex = 0;
continue;
}
yield chunk.substring(startIndex, result.index);
startIndex = re.lastIndex;
}
if (startIndex < chunk.length) {
// last line didn't end in a newline char
yield chunk.substr(startIndex);
}
}
function cosineSimilarity(A, B) {
if(A.length !== B.length) throw new Error("A.length !== B.length");
let dotProduct = 0, mA = 0, mB = 0;
for(let i = 0; i < A.length; i++){
dotProduct += A[i] * B[i];
mA += A[i] * A[i];
mB += B[i] * B[i];
}
mA = Math.sqrt(mA);
mB = Math.sqrt(mB);
let similarity = dotProduct / (mA * mB);
return similarity;
}
function sleep(ms) {
return new Promise(r => setTimeout(r, ms));
}
function enableCtn(el) {
el.style.opacity = 1;
el.style.pointerEvents = "";
}
function disableCtn(el) {
el.style.opacity = 0.5;
el.style.pointerEvents = "none";
}
// From the PyTorch model running on CUDA:
// Text: "a portrait of an astronaut with the American flag"
// Embedding: [-1.6626e-01, 5.2277e-02, -1.5332e-01, 4.4946e-01, 2.0667e-01, -2.9565e-01, 4.0588e-02, -4.1016e-01, -1.5027e-01, 3.1934e-01, -6.9702e-02, -2.5488e-01, 1.2335e-01, -9.5337e-02, 2.4109e-01, -4.8950e-02, 2.6074e-01, 5.3835e-04, 2.1033e-01, 3.7012e-01, 4.5679e-01, 3.9795e-01, 3.1641e-01, 3.9551e-01, 1.3931e-02, -4.3060e-02, 4.8798e-02, 3.7158e-01, 1.1731e-01, -3.7256e-01, -2.7295e-01, 3.3130e-01, 5.4980e-01, -2.9816e-02, -2.5806e-01, -1.0016e-01, 8.0750e-02, -6.7139e-02, -2.4072e-01, 2.4353e-01, -3.2202e-01, -1.0327e-01, 1.1566e-01, 6.2646e-01, 1.8262e-01, 2.7539e-01, -1.1816e-01, 4.9512e-01, 8.9539e-02, 5.6299e-01, 2.1313e-01, -1.5625e-01, 1.9958e-01, -5.0049e-01, -2.5854e-01, -4.0430e-01, -1.1298e-01, -6.6338e-03, 2.5391e-01, -5.0629e-02, 2.2253e-01, -2.7295e-01, -5.8289e-03, -4.8804e-01, -7.7820e-02, -3.5187e-02, -3.7537e-02, 4.3213e-01, 3.8300e-02, 2.1045e-01, -3.0347e-01, -9.8999e-02, -1.7407e-01, 2.8882e-01, 1.1322e-01, -1.0883e-01, 1.7065e-01, -2.1191e-01, 1.7920e-01, -1.2805e-01, -4.6924e-01, 1.1957e-01, -1.1829e-01, -1.1902e-01, -2.4353e-01, -9.6008e-02, 2.2913e-01, -1.0948e-02, -1.5686e-01, -2.0483e-01, -2.4756e-01, 9.1125e-02, -9.5557e-01, -4.2511e-02, 4.6356e-02, 4.3481e-01, 2.3633e-01, -3.3252e-01, 3.7231e-01, -5.5695e-02, 7.1777e-02, -1.0370e-01, -2.1912e-01, -1.3733e-01, 1.2048e-01, 1.7151e-01, -1.2659e-01, 2.3523e-01, 2.6001e-01, -4.0381e-01, 1.1761e-01, -4.1626e-02, 1.0974e-01, -5.5206e-02, 4.9713e-02, 5.2197e-01, 3.9124e-02, 5.7959e-01, 9.9609e-02, -3.3740e-01, -2.7295e-01, -7.3389e-01, 1.0962e-01, -3.2178e-01, 6.5869e-01, 2.3460e-03, 2.6733e-02, 3.2471e-02, -2.4500e-01, 7.9041e-02, 1.5405e-01, -3.5547e-01, -1.5625e-01, 4.2695e+00, -1.6113e-01, 1.6467e-01, -3.8794e-01, 2.1545e-02, 1.5771e-01, 2.0068e-01, -3.4741e-01, 2.5244e-01, 1.2201e-01, -3.9795e-02, 3.2471e-01, 2.6562e-01, 1.2915e-01, 1.4465e-02, -2.1265e-01, -2.5055e-02, 5.6689e-01, -6.5125e-02, 1.1652e-01, -5.1025e-01, 1.0712e-01, 8.8867e-02, 1.6882e-01, -6.5125e-02, 4.5929e-02, 2.9517e-01, 6.5479e-01, -9.0881e-02, -4.6417e-02, -3.0713e-01, -5.1537e-03, 4.9390e-01, 5.4492e-01, -3.1812e-01, -6.0577e-02, 3.6591e-02, 7.6782e-02, -3.5181e-01, 4.9487e-01, -4.1040e-01, 4.3970e-01, 1.6553e-01, -3.7329e-01, 3.3594e-01, -1.9263e-01, -1.8225e-01, -1.9623e-02, -4.0454e-01, 1.6187e-01, 1.5259e-01, 2.5122e-01, 1.1993e-01, -8.4595e-02, -4.1016e-01, -1.8225e-01, 1.8555e-01, -3.9124e-02, 2.5122e-01, -2.2949e-01, 5.3125e-01, -1.0504e-01, -2.1439e-02, -2.2559e-01, 5.9357e-02, -3.9160e-01, -3.3716e-01, -9.0393e-02, -1.7493e-01, -2.5952e-01, 2.3401e-01, 3.8013e-01, 1.2927e-01, 1.5491e-01, 1.1920e-01, -1.5906e-01, 5.7487e-03, 7.6172e-02, 1.5552e-01, 2.1790e-01, 9.9304e-02, -3.8025e-02, -1.1829e-01, -1.3293e-01, -2.2278e-01, -2.1472e-01, 3.0957e-01, -1.0254e-01, -2.0264e-01, -2.6840e-02, 8.8379e-02, -8.2092e-02, 1.3647e-01, -2.1399e-01, -2.5684e-01, 1.3745e-01, 6.1371e-02, -1.2988e-01, 6.2683e-02, 1.2964e-01, -3.3112e-02, 1.4111e-01, -2.6440e-01, 4.7379e-03, -1.0815e-01, -4.4971e-01, -3.5583e-02, 1.1469e-01, 6.7871e-02, -5.8350e-02, 1.0297e-01, -6.3086e-01, -8.3350e-01, 4.3481e-01, -1.7383e-01, -1.5491e-01, -5.5176e-01, 5.9766e-01, -2.6880e-01, 5.6976e-02, -2.6318e-01, -4.0466e-02, 2.4927e-01, -1.4893e-01, -2.0032e-01, -2.7515e-01, -1.2598e-01, 3.2440e-02, -1.2939e-01, 6.8018e-01, -3.6060e-01, -3.3496e-01, 9.8267e-02, -1.0010e-01, 1.9653e-01, -3.3032e-01, -2.0032e-01, 1.9116e-01, 8.2214e-02, 3.2397e-01, 1.3708e-01, 3.0899e-02, 1.5454e-01, 3.2422e-01, 1.0693e-01, 3.1714e-01, 3.7280e-01, -2.3401e-01, -5.0171e-02, 7.6758e-01, 2.2046e-01, 3.3997e-02, 1.0231e-02, -2.3999e-01, -1.3672e-01, 5.2002e-01, -6.5552e-02, 6.9275e-02, 2.3706e-01, -3.8257e-01, 1.4990e-01, -2.2656e-01, 4.3018e-01, -4.4678e-01, 2.5977e-01, 3.8208e-01, 9.5215e-02, -2.0239e-01, -2.3169e-01, -3.1396e-01, 3.2806e-02, -2.7905e-01, -1.0361e+00, 3.8147e-02, -1.0278e-01, 2.8369e-01, -3.8623e-01, -2.3132e-01, 1.5784e-01, 4.2734e+00, -1.5820e-01, -1.4758e-01, 2.0032e-01, -1.9678e-01, -7.5586e-01, 1.0712e-01, -2.1777e-01, -4.0552e-01, -1.0919e-01, 1.1932e-01, 7.3486e-01, -1.7700e-01, 5.0732e-01, -9.7351e-02, -4.7192e-01, 5.9052e-02, -7.0117e-01, -1.8774e-01, 2.4329e-01, 3.5083e-01, -2.3633e-01, 2.2205e-01, -2.4719e-03, 4.4507e-01, -1.1005e-01, 5.6494e-01, -1.4697e-01, -8.5022e-02, -2.6050e-01, -8.3679e-02, 3.0615e-01, 1.0181e-01, -2.2266e-01, -1.2054e-01, 1.0094e-02, -1.6382e-01, 3.7671e-01, 1.1371e-01, 8.8959e-03, -1.2866e-01, 7.5500e-02, -3.1177e-01, 9.0698e-02, 2.4139e-02, 2.7124e-01, 4.1382e-01, 9.3872e-02, -3.5815e-01, -1.0602e-01, -2.7637e-01, 1.5613e-01, 2.6025e-01, -1.3428e-01, -2.1509e-01, -3.0005e-01, 7.7515e-02, -2.2253e-01, -1.2634e-01, 1.0114e-01, 2.9395e-01, 4.2065e-01, -4.6425e-03, -6.3721e-01, -4.0308e-01, -5.1849e-02, -9.1309e-02, 1.0577e-01, -1.6800e-02, -4.4823e-03, 2.4231e-01, -1.3635e-01, 1.7041e-01, -9.9243e-02, -1.2439e-01, 1.5247e-01, 1.4717e-02, -1.6785e-01, -3.0615e-01, 2.6074e-01, 1.0938e-01, 4.9487e-01, 1.0529e-01, 3.1799e-02, 7.5928e-02, -1.1212e-01, -3.1201e-01, 5.8740e-01, -1.3171e-01, -1.1090e-01, 5.8887e-01, -1.1420e-01, -2.0056e-01, 1.0425e-01, 2.7710e-01, -5.8098e-03, 5.7324e-01, -1.4417e-01, 1.4575e-01, -2.7466e-01, -2.1313e-01, -1.7627e-01, 1.5466e-01, 3.8013e-01, -1.4612e-01, -2.7246e-01, -1.8604e-01, 1.0394e-01, 1.6016e-01, -1.1017e-01, 1.8140e-01, -3.0078e-01, 6.0303e-01, -1.3904e-01, 1.7322e-01, 2.2510e-01, 2.3303e-01, -5.0879e-01, -2.3462e-01, -2.0544e-01, -2.4768e-01, -2.4121e-01, -7.2754e-01, 7.2754e-01, -4.4312e-02, -1.4198e-02, -1.1475e-01, -1.3684e-01, -3.5278e-01, 1.2347e-01, -2.9602e-02, 4.0550e-03, 1.1951e-01, -6.5575e-03, -7.1228e-02, -3.8062e-01, 6.5125e-02, -1.6541e-01, -3.0289e-02, 8.6609e-02, -1.2134e-01, -1.2164e-01, 3.0319e-02, -1.5173e-01, -7.9834e-02, 1.4148e-01, 2.7319e-01, -2.1545e-01, -1.6382e-01, -2.9419e-01, -2.6611e-01, -7.5102e-04, 1.3135e-01, 9.8389e-02, 3.1812e-01, 5.5115e-02, -5.3253e-02, 4.3823e-02, 3.6957e-02, -1.3599e-01, 1.1023e-01, 9.8267e-02, 2.1643e-01, 9.3567e-02, 1.2718e-02, 1.6406e-01, -1.0338e-02, 1.9019e-01, 1.4392e-01, 3.3081e-02, 1.0138e-01, -1.6943e-01, 8.6136e-03, 1.4478e-01, 1.0941e-02, 1.3635e-01, -8.1543e-01, -3.4912e-01, 7.4959e-03, 2.1997e-01, -2.5681e-02, 2.3206e-01, 3.7622e-01, 3.6401e-01, -1.6357e-01, -2.0984e-01, -1.3220e-01, -6.7322e-02, 2.0117e-01, -4.7583e-01, 6.8054e-02, 2.2437e-01, 2.6709e-01, -5.4626e-02, -4.0741e-02, 5.2002e-02, -1.8872e-01, 3.1372e-01, -1.3574e-01, -2.6538e-01];
</script>
</body>
</html>
|