Spaces:
Runtime error
Runtime error
File size: 6,497 Bytes
3ae65e0 17e0c31 3ae65e0 17e0c31 3ae65e0 17e0c31 3ae65e0 17e0c31 3ae65e0 17e0c31 daf3ca1 17e0c31 3ae65e0 5238467 17e0c31 3ae65e0 17e0c31 3ae65e0 17e0c31 3ae65e0 17e0c31 3ae65e0 17e0c31 3ae65e0 17e0c31 3ae65e0 17e0c31 3ae65e0 17e0c31 eaf8326 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
from tempfile import NamedTemporaryFile
import torch
import gradio as gr
from share_btn import community_icon_html, loading_icon_html, share_js, css
from audiocraft.data.audio_utils import convert_audio
from audiocraft.data.audio import audio_write
from audiocraft.models import MusicGen
MODEL = None
def load_model():
print("Loading model")
return MusicGen.get_pretrained("melody")
def predict(texts, melodies):
global MODEL
if MODEL is None:
MODEL = load_model()
duration = 12
MODEL.set_generation_params(duration=duration)
print(texts, melodies)
processed_melodies = []
target_sr = 32000
target_ac = 1
for melody in melodies:
if melody is None:
processed_melodies.append(None)
else:
sr, melody = (
melody[0],
torch.from_numpy(melody[1]).to(MODEL.device).float().t(),
)
if melody.dim() == 1:
melody = melody[None]
melody = melody[..., : int(sr * duration)]
melody = convert_audio(melody, sr, target_sr, target_ac)
processed_melodies.append(melody)
outputs = MODEL.generate_with_chroma(
descriptions=texts,
melody_wavs=processed_melodies,
melody_sample_rate=target_sr,
progress=False,
)
outputs = outputs.detach().cpu().float()
out_files = []
for output in outputs:
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
audio_write(
file.name,
output,
MODEL.sample_rate,
strategy="loudness",
loudness_headroom_db=16,
loudness_compressor=True,
add_suffix=False,
)
waveform_video = gr.make_waveform(file.name)
out_files.append(waveform_video)
return [out_files, melodies]
def toggle(choice):
if choice == "mic":
return gr.update(source="microphone", value=None, label="Microphone")
else:
return gr.update(source="upload", value=None, label="File")
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# MusicGen
This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284).
<br/>
<a href="https://huggingface.co/spaces/musicgen/MusicGen?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
for longer sequences, more control and no queue.</p>
"""
)
with gr.Row():
with gr.Column():
with gr.Row():
text = gr.Text(
label="Describe your music",
lines=2,
interactive=True,
elem_id="text-input",
)
with gr.Column():
radio = gr.Radio(
["file", "mic"],
value="file",
label="Melody Condition (optional) File or Mic",
)
melody = gr.Audio(
source="upload",
type="numpy",
label="File",
interactive=True,
elem_id="melody-input",
)
with gr.Row():
submit = gr.Button("Generate")
with gr.Column():
output = gr.Video(label="Generated Music", elem_id="generated-video")
output_melody = gr.Audio(label="Melody ", elem_id="melody-output")
with gr.Row(visible=False) as share_row:
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Share to community", elem_id="share-btn")
share_button.click(None, [], [], _js=share_js)
submit.click(
lambda x: gr.update(visible=False),
None,
[share_row],
queue=False,
show_progress=False,
).then(
predict,
inputs=[text, melody],
outputs=[output, output_melody],
batch=True,
max_batch_size=12,
).then(
lambda x: gr.update(visible=True),
None,
[share_row],
queue=False,
show_progress=False,
)
radio.change(toggle, radio, [melody], queue=False, show_progress=False)
gr.Examples(
fn=predict,
examples=[
[
"An 80s driving pop song with heavy drums and synth pads in the background",
"./assets/bach.mp3",
],
[
"A cheerful country song with acoustic guitars",
"./assets/bolero_ravel.mp3",
],
[
"90s rock song with electric guitar and heavy drums",
None,
],
[
"a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130",
"./assets/bach.mp3",
],
[
"lofi slow bpm electro chill with organic samples",
None,
],
],
inputs=[text, melody],
outputs=[output],
)
gr.Markdown(
"""
### More details
The model will generate 12 seconds of audio based on the description you provided.
You can optionaly provide a reference audio from which a broad melody will be extracted.
The model will then try to follow both the description and melody provided.
All samples are generated with the `melody` model.
You can also use your own GPU or a Google Colab by following the instructions on our repo.
See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
for more details.
"""
)
demo.queue(max_size=60).launch()
|