File size: 6,497 Bytes
3ae65e0
 
 
 
 
 
 
 
 
 
 
17e0c31
 
3ae65e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17e0c31
 
 
 
3ae65e0
 
17e0c31
3ae65e0
 
 
 
 
 
 
17e0c31
3ae65e0
 
 
 
 
 
 
17e0c31
 
 
 
daf3ca1
 
17e0c31
 
3ae65e0
 
5238467
17e0c31
 
3ae65e0
17e0c31
 
 
 
 
3ae65e0
17e0c31
 
3ae65e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17e0c31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ae65e0
 
 
17e0c31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ae65e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17e0c31
3ae65e0
17e0c31
 
3ae65e0
 
 
 
 
 
 
 
 
 
 
17e0c31
 
eaf8326
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.

This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""

from tempfile import NamedTemporaryFile
import torch
import gradio as gr
from share_btn import community_icon_html, loading_icon_html, share_js, css

from audiocraft.data.audio_utils import convert_audio
from audiocraft.data.audio import audio_write
from audiocraft.models import MusicGen


MODEL = None


def load_model():
    print("Loading model")
    return MusicGen.get_pretrained("melody")


def predict(texts, melodies):
    global MODEL
    if MODEL is None:
        MODEL = load_model()

    duration = 12
    MODEL.set_generation_params(duration=duration)

    print(texts, melodies)
    processed_melodies = []

    target_sr = 32000
    target_ac = 1
    for melody in melodies:
        if melody is None:
            processed_melodies.append(None)
        else:
            sr, melody = (
                melody[0],
                torch.from_numpy(melody[1]).to(MODEL.device).float().t(),
            )
            if melody.dim() == 1:
                melody = melody[None]
            melody = melody[..., : int(sr * duration)]
            melody = convert_audio(melody, sr, target_sr, target_ac)
            processed_melodies.append(melody)

    outputs = MODEL.generate_with_chroma(
        descriptions=texts,
        melody_wavs=processed_melodies,
        melody_sample_rate=target_sr,
        progress=False,
    )

    outputs = outputs.detach().cpu().float()
    out_files = []
    for output in outputs:
        with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
            audio_write(
                file.name,
                output,
                MODEL.sample_rate,
                strategy="loudness",
                loudness_headroom_db=16,
                loudness_compressor=True,
                add_suffix=False,
            )
            waveform_video = gr.make_waveform(file.name)
            out_files.append(waveform_video)

    return [out_files, melodies]


def toggle(choice):
    if choice == "mic":
        return gr.update(source="microphone", value=None, label="Microphone")
    else:
        return gr.update(source="upload", value=None, label="File")


with gr.Blocks(css=css) as demo:
    gr.Markdown(
        """
        # MusicGen

        This is the demo for [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation
        presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284).
        <br/>
        <a href="https://huggingface.co/spaces/musicgen/MusicGen?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
        <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
        for longer sequences, more control and no queue.</p>
        """
    )
    with gr.Row():
        with gr.Column():
            with gr.Row():
                text = gr.Text(
                    label="Describe your music",
                    lines=2,
                    interactive=True,
                    elem_id="text-input",
                )
                with gr.Column():
                    radio = gr.Radio(
                        ["file", "mic"],
                        value="file",
                        label="Melody Condition (optional) File or Mic",
                    )
                    melody = gr.Audio(
                        source="upload",
                        type="numpy",
                        label="File",
                        interactive=True,
                        elem_id="melody-input",
                    )
            with gr.Row():
                submit = gr.Button("Generate")
        with gr.Column():
            output = gr.Video(label="Generated Music", elem_id="generated-video")
            output_melody = gr.Audio(label="Melody ", elem_id="melody-output")
            with gr.Row(visible=False) as share_row:
                with gr.Group(elem_id="share-btn-container"):
                    community_icon = gr.HTML(community_icon_html)
                    loading_icon = gr.HTML(loading_icon_html)
                    share_button = gr.Button("Share to community", elem_id="share-btn")
                    share_button.click(None, [], [], _js=share_js)
    submit.click(
        lambda x: gr.update(visible=False),
        None,
        [share_row],
        queue=False,
        show_progress=False,
    ).then(
        predict,
        inputs=[text, melody],
        outputs=[output, output_melody],
        batch=True,
        max_batch_size=12,
    ).then(
        lambda x: gr.update(visible=True),
        None,
        [share_row],
        queue=False,
        show_progress=False,
    )
    radio.change(toggle, radio, [melody], queue=False, show_progress=False)
    gr.Examples(
        fn=predict,
        examples=[
            [
                "An 80s driving pop song with heavy drums and synth pads in the background",
                "./assets/bach.mp3",
            ],
            [
                "A cheerful country song with acoustic guitars",
                "./assets/bolero_ravel.mp3",
            ],
            [
                "90s rock song with electric guitar and heavy drums",
                None,
            ],
            [
                "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions bpm: 130",
                "./assets/bach.mp3",
            ],
            [
                "lofi slow bpm electro chill with organic samples",
                None,
            ],
        ],
        inputs=[text, melody],
        outputs=[output],
    )
    gr.Markdown(
        """
    ### More details

    The model will generate 12 seconds of audio based on the description you provided.
    You can optionaly provide a reference audio from which a broad melody will be extracted.
    The model will then try to follow both the description and melody provided.
    All samples are generated with the `melody` model.
  
    You can also use your own GPU or a Google Colab by following the instructions on our repo.

    See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft)
    for more details.
    """
    )
demo.queue(max_size=60).launch()