Spaces:
Building
on
A10G
Building
on
A10G
File size: 10,374 Bytes
eb9ca51 b53d2ad eb9ca51 b53d2ad eb9ca51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
import sys
import os
import torch
from pathlib import Path
from huggingface_hub import hf_hub_download
from PIL import Image, ImageSequence, ImageOps
from typing import List
import numpy as np
sys.path.append(os.path.dirname("./ComfyUI/"))
from ComfyUI.nodes import (
CheckpointLoaderSimple,
VAEDecode,
VAEEncode,
KSampler,
EmptyLatentImage,
CLIPTextEncode,
)
from ComfyUI.comfy_extras.nodes_compositing import JoinImageWithAlpha
from ComfyUI.comfy_extras.nodes_mask import InvertMask, MaskToImage
from ComfyUI.comfy import samplers
from ComfyUI.custom_nodes.layerdiffuse.layered_diffusion import (
LayeredDiffusionFG,
LayeredDiffusionDecode,
LayeredDiffusionCond,
)
import gradio as gr
MODEL_PATH = hf_hub_download(
repo_id="lllyasviel/fav_models",
subfolder="fav",
filename="juggernautXL_v8Rundiffusion.safetensors",
)
try:
os.symlink(
MODEL_PATH,
Path("./ComfyUI/models/checkpoints/juggernautXL_v8Rundiffusion.safetensors"),
)
except FileExistsError:
pass
with torch.inference_mode():
ckpt_load_checkpoint = CheckpointLoaderSimple().load_checkpoint
ckpt = ckpt_load_checkpoint(ckpt_name="juggernautXL_v8Rundiffusion.safetensors")
cliptextencode = CLIPTextEncode().encode
emptylatentimage_generate = EmptyLatentImage().generate
ksampler_sample = KSampler().sample
vae_decode = VAEDecode().decode
vae_encode = VAEEncode().encode
ld_fg_apply_layered_diffusion = LayeredDiffusionFG().apply_layered_diffusion
ld_cond_apply_layered_diffusion = LayeredDiffusionCond().apply_layered_diffusion
ld_decode = LayeredDiffusionDecode().decode
mask_to_image = MaskToImage().mask_to_image
invert_mask = InvertMask().invert
join_image_with_alpha = JoinImageWithAlpha().join_image_with_alpha
def tensor_to_pil(images: torch.Tensor | List[torch.Tensor]) -> List[Image.Image]:
if not isinstance(images, list):
images = [images]
imgs = []
for image in images:
i = 255.0 * image.cpu().numpy()
img = Image.fromarray(np.clip(np.squeeze(i), 0, 255).astype(np.uint8))
imgs.append(img)
return imgs
def pad_image(input_image):
pad_w, pad_h = (
np.max(((2, 2), np.ceil(np.array(input_image.size) / 64).astype(int)), axis=0)
* 64
- input_image.size
)
im_padded = Image.fromarray(
np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode="edge")
)
w, h = im_padded.size
if w == h:
return im_padded
elif w > h:
new_image = Image.new(im_padded.mode, (w, w), (0, 0, 0))
new_image.paste(im_padded, (0, (w - h) // 2))
return new_image
else:
new_image = Image.new(im_padded.mode, (h, h), (0, 0, 0))
new_image.paste(im_padded, ((h - w) // 2, 0))
return new_image
def pil_to_tensor(image: Image.Image) -> tuple[torch.Tensor, torch.Tensor]:
output_images = []
output_masks = []
for i in ImageSequence.Iterator(image):
i = ImageOps.exif_transpose(i)
if i.mode == "I":
i = i.point(lambda i: i * (1 / 255))
image = i.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
if "A" in i.getbands():
mask = np.array(i.getchannel("A")).astype(np.float32) / 255.0
mask = 1.0 - torch.from_numpy(mask)
else:
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
output_images.append(image)
output_masks.append(mask.unsqueeze(0))
if len(output_images) > 1:
output_image = torch.cat(output_images, dim=0)
output_mask = torch.cat(output_masks, dim=0)
else:
output_image = output_images[0]
output_mask = output_masks[0]
return (output_image, output_mask)
def predict(
prompt: str,
negative_prompt: str,
input_image: Image.Image | None,
cond_mode: str,
seed: int,
sampler_name: str,
scheduler: str,
steps: int,
cfg: float,
denoise: float,
):
with torch.inference_mode():
cliptextencode_prompt = cliptextencode(
text=prompt,
clip=ckpt[1],
)
cliptextencode_negative_prompt = cliptextencode(
text=negative_prompt,
clip=ckpt[1],
)
emptylatentimage_sample = emptylatentimage_generate(
width=1024, height=1024, batch_size=1
)
if input_image is not None:
img_tensor = pil_to_tensor(pad_image(input_image).resize((1024, 1024)))
img_latent = vae_encode(pixels=img_tensor[0], vae=ckpt[2])
layereddiffusionapply_sample = ld_cond_apply_layered_diffusion(
config=cond_mode,
weight=1,
model=ckpt[0],
cond=cliptextencode_prompt[0],
uncond=cliptextencode_negative_prompt[0],
latent=img_latent[0],
)
ksampler = ksampler_sample(
steps=steps,
cfg=cfg,
sampler_name=sampler_name,
scheduler=scheduler,
seed=seed,
model=layereddiffusionapply_sample[0],
positive=layereddiffusionapply_sample[1],
negative=layereddiffusionapply_sample[2],
latent_image=emptylatentimage_sample[0],
denoise=denoise,
)
vaedecode_sample = vae_decode(
samples=ksampler[0],
vae=ckpt[2],
)
layereddiffusiondecode_sample = ld_decode(
sd_version="SDXL",
sub_batch_size=16,
samples=ksampler[0],
images=vaedecode_sample[0],
)
rgb_img = tensor_to_pil(vaedecode_sample[0])
return flatten([rgb_img])
else:
layereddiffusionapply_sample = ld_fg_apply_layered_diffusion(
config="SDXL, Conv Injection", weight=1, model=ckpt[0]
)
ksampler = ksampler_sample(
steps=steps,
cfg=cfg,
sampler_name=sampler_name,
scheduler=scheduler,
seed=seed,
model=layereddiffusionapply_sample[0],
positive=cliptextencode_prompt[0],
negative=cliptextencode_negative_prompt[0],
latent_image=emptylatentimage_sample[0],
denoise=denoise,
)
vaedecode_sample = vae_decode(
samples=ksampler[0],
vae=ckpt[2],
)
layereddiffusiondecode_sample = ld_decode(
sd_version="SDXL",
sub_batch_size=16,
samples=ksampler[0],
images=vaedecode_sample[0],
)
mask = mask_to_image(mask=layereddiffusiondecode_sample[1])
ld_image = tensor_to_pil(layereddiffusiondecode_sample[0][0])
inverted_mask = invert_mask(mask=layereddiffusiondecode_sample[1])
rgba_img = join_image_with_alpha(
image=layereddiffusiondecode_sample[0], alpha=inverted_mask[0]
)
rgba_img = tensor_to_pil(rgba_img[0])
mask = tensor_to_pil(mask[0])
rgb_img = tensor_to_pil(vaedecode_sample[0])
return flatten([rgba_img, mask, rgb_img, ld_image])
examples = [["An old men sit on a chair looking at the sky"]]
def flatten(l: List[List[any]]) -> List[any]:
return [item for sublist in l for item in sublist]
def predict_examples(prompt, negative_prompt):
return predict(
prompt, negative_prompt, None, None, 0, "euler", "normal", 20, 8.0, 1.0
)
css = """
.gradio-container{
max-width: 60rem;
}
"""
with gr.Blocks(css=css) as blocks:
gr.Markdown("""# LayerDiffuse (unofficial)
""")
with gr.Row():
with gr.Column():
prompt = gr.Text(label="Prompt")
negative_prompt = gr.Text(label="Negative Prompt")
button = gr.Button("Generate")
with gr.Accordion(open=False, label="Input Images (Optional)"):
cond_mode = gr.Radio(
value="SDXL, Foreground",
choices=["SDXL, Foreground", "SDXL, Background"],
info="Whether to use input image as foreground or background",
)
input_image = gr.Image(label="Input Image", type="pil")
with gr.Accordion(open=False, label="Advanced Options"):
seed = gr.Slider(
label="Seed",
value=0,
minimum=-1,
maximum=0xFFFFFFFFFFFFFFFF,
step=1,
randomize=True,
)
sampler_name = gr.Dropdown(
choices=samplers.KSampler.SAMPLERS,
label="Sampler Name",
value=samplers.KSampler.SAMPLERS[0],
)
scheduler = gr.Dropdown(
choices=samplers.KSampler.SCHEDULERS,
label="Scheduler",
value=samplers.KSampler.SCHEDULERS[0],
)
steps = gr.Number(
label="Steps", value=20, minimum=1, maximum=10000, step=1
)
cfg = gr.Number(
label="CFG", value=8.0, minimum=0.0, maximum=100.0, step=0.1
)
denoise = gr.Number(
label="Denoise", value=1.0, minimum=0.0, maximum=1.0, step=0.01
)
with gr.Column(scale=1.8):
gallery = gr.Gallery(
columns=[2], rows=[2], object_fit="contain", height="unset"
)
inputs = [
prompt,
negative_prompt,
input_image,
cond_mode,
seed,
sampler_name,
scheduler,
steps,
cfg,
denoise,
]
outputs = [gallery]
gr.Examples(
fn=predict_examples,
examples=examples,
inputs=[prompt, negative_prompt],
outputs=outputs,
cache_examples=False,
)
button.click(fn=predict, inputs=inputs, outputs=outputs)
if __name__ == "__main__":
blocks.launch()
|