Spaces:
Running
on
Zero
Running
on
Zero
File size: 57,018 Bytes
431084f 84e44a0 476ebd3 84e44a0 e6b8403 84e44a0 e6b8403 84e44a0 b91ebf7 84e44a0 e6b8403 84e44a0 431084f 84e44a0 431084f 84e44a0 431084f e6b8403 84e44a0 e6b8403 431084f e6b8403 431084f e6b8403 431084f 84e44a0 fee12c7 84e44a0 431084f e6b8403 84e44a0 e6b8403 84e44a0 e6b8403 431084f e6b8403 84e44a0 431084f e6b8403 29264b8 431084f 84e44a0 431084f 84e44a0 431084f 84e44a0 431084f 84e44a0 431084f 84e44a0 431084f 84e44a0 431084f 84e44a0 431084f 84e44a0 431084f e6b8403 431084f e6b8403 431084f e6b8403 431084f e6b8403 84e44a0 27ad614 431084f 26bfa39 e6b8403 84e44a0 307fb72 84e44a0 307fb72 84e44a0 307fb72 e6b8403 431084f e6b8403 431084f e6b8403 431084f e6b8403 84e44a0 431084f e6b8403 84e44a0 e6b8403 431084f 84e44a0 e6b8403 84e44a0 e6b8403 431084f 84e44a0 e6b8403 431084f 84e44a0 431084f e6b8403 84e44a0 e6b8403 431084f 84e44a0 e6b8403 431084f 84e44a0 e6b8403 84e44a0 e6b8403 431084f e6b8403 84e44a0 e6b8403 431084f e6b8403 431084f e6b8403 431084f e6b8403 84e44a0 e6b8403 84e44a0 e6b8403 431084f 84e44a0 431084f e6b8403 431084f e6b8403 2784108 e6b8403 84e44a0 431084f e6b8403 431084f e6b8403 431084f e6b8403 84e44a0 e6b8403 431084f 84e44a0 431084f e6b8403 431084f e6b8403 431084f 84e44a0 431084f e6b8403 8e6c9a4 e6b8403 476ebd3 431084f e6b8403 431084f 84e44a0 e6b8403 84e44a0 431084f e6b8403 431084f e6b8403 431084f e6b8403 431084f e6b8403 431084f e6b8403 431084f fefb0ab e6b8403 a987a8b 84e44a0 431084f 84e44a0 431084f e6b8403 431084f e6b8403 431084f e6b8403 431084f e6b8403 431084f e6b8403 431084f e6b8403 431084f e6b8403 659c8f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 |
#%cd SoniTranslate
# vc infer pipe 161 np.int
import os
os.system("pip install -r requirements_colab.txt")
os.system("pip install -r requirements_extra.txt")
os.system('apt install git-lfs')
os.system('git lfs install')
os.system('apt -y install -qq aria2')
os.system('aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt -d . -o hubert_base.pt')
os.system('wget https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/rmvpe.pt')
import numpy as np
import gradio as gr
import whisperx
from whisperx.utils import LANGUAGES as LANG_TRANSCRIPT
from whisperx.alignment import DEFAULT_ALIGN_MODELS_TORCH as DAMT, DEFAULT_ALIGN_MODELS_HF as DAMHF
from IPython.utils import capture
import torch
from gtts import gTTS
import librosa
import edge_tts
import asyncio
import gc
from pydub import AudioSegment
from tqdm import tqdm
from deep_translator import GoogleTranslator
import os
from soni_translate.audio_segments import create_translated_audio
from soni_translate.text_to_speech import make_voice_gradio
from soni_translate.translate_segments import translate_text
import time
import shutil
from urllib.parse import unquote
import zipfile
import rarfile
import logging
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("httpx").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
title = "<center><strong><font size='7'>📽️ SoniTranslate 🈷️</font></strong></center>"
news = """ ## 📖 News
🔥 2023/07/26: New UI and add mix options.
🔥 2023/07/27: Fix some bug processing the video and audio.
🔥 2023/08/01: Add options for use RVC models.
🔥 2023/08/02: Added support for Arabic, Czech, Danish, Finnish, Greek, Hebrew, Hungarian, Korean, Persian, Polish, Russian, Turkish, Urdu, Hindi, and Vietnamese languages. 🌐
🔥 2023/08/03: Changed default options and added directory view of downloads..
"""
description = """
### 🎥 **Translate videos easily with SoniTranslate!** 📽️
Upload a video or provide a video link. Limitation: 10 seconds for CPU, but no restrictions with a GPU.
For faster results and no duration limits, try the Colab notebook with a GPU:
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://github.com/R3gm/SoniTranslate/blob/main/SoniTranslate_Colab.ipynb)
📽️ **This a demo of SoniTranslate; GitHub repository: [SoniTranslate](https://github.com/R3gm/SoniTranslate)!**
See the tab labeled `Help` for instructions on how to use it. Let's start having fun with video translation! 🚀🎉
"""
tutorial = """
# 🔰 **Instructions for use:**
1. 📤 **Upload a video** on the first tab or 🌐 **use a video link** on the second tab.
2. 🌍 Choose the language in which you want to **translate the video**.
3. 🗣️ Specify the **number of people speaking** in the video and **assign each one a text-to-speech voice** suitable for the translation language.
4. 🚀 Press the '**Translate**' button to obtain the results.
# 🎤 (Optional) How to Use RVC and RVC2 Voices 🎶
The goal is to apply a RVC (Retrieval-based Voice Conversion) to the generated TTS (Text-to-Speech) 🎙️
1. In the `Custom Voice RVC` tab, download the models you need 📥 You can use links from Hugging Face and Google Drive in formats like zip, pth, or index. You can also download complete HF space repositories, but this option is not very stable 😕
2. Now, go to `Replace voice: TTS to RVC` and check the `enable` box ✅ After this, you can choose the models you want to apply to each TTS speaker 👩🦰👨🦱👩🦳👨🦲
3. Adjust the F0 method that will be applied to all RVCs 🎛️
4. Press `APPLY CONFIGURATION` to apply the changes you made 🔄
5. Go back to the video translation tab and click on 'Translate' ▶️ Now, the translation will be done applying the RVCs 🗣️
Tip: You can use `Test RVC` to experiment and find the best TTS or configurations to apply to the RVC 🧪🔍
"""
# Check GPU
if torch.cuda.is_available():
device = "cuda"
list_compute_type = ['float16', 'float32']
compute_type_default = 'float16'
whisper_model_default = 'large-v2'
else:
device = "cpu"
list_compute_type = ['float32']
compute_type_default = 'float32'
whisper_model_default = 'medium'
print('Working in: ', device)
list_tts = ['af-ZA-AdriNeural-Female', 'af-ZA-WillemNeural-Male', 'am-ET-AmehaNeural-Male', 'am-ET-MekdesNeural-Female', 'ar-AE-FatimaNeural-Female', 'ar-AE-HamdanNeural-Male', 'ar-BH-AliNeural-Male', 'ar-BH-LailaNeural-Female', 'ar-DZ-AminaNeural-Female', 'ar-DZ-IsmaelNeural-Male', 'ar-EG-SalmaNeural-Female', 'ar-EG-ShakirNeural-Male', 'ar-IQ-BasselNeural-Male', 'ar-IQ-RanaNeural-Female', 'ar-JO-SanaNeural-Female', 'ar-JO-TaimNeural-Male', 'ar-KW-FahedNeural-Male', 'ar-KW-NouraNeural-Female', 'ar-LB-LaylaNeural-Female', 'ar-LB-RamiNeural-Male', 'ar-LY-ImanNeural-Female', 'ar-LY-OmarNeural-Male', 'ar-MA-JamalNeural-Male', 'ar-MA-MounaNeural-Female', 'ar-OM-AbdullahNeural-Male', 'ar-OM-AyshaNeural-Female', 'ar-QA-AmalNeural-Female', 'ar-QA-MoazNeural-Male', 'ar-SA-HamedNeural-Male', 'ar-SA-ZariyahNeural-Female', 'ar-SY-AmanyNeural-Female', 'ar-SY-LaithNeural-Male', 'ar-TN-HediNeural-Male', 'ar-TN-ReemNeural-Female', 'ar-YE-MaryamNeural-Female', 'ar-YE-SalehNeural-Male', 'az-AZ-BabekNeural-Male', 'az-AZ-BanuNeural-Female', 'bg-BG-BorislavNeural-Male', 'bg-BG-KalinaNeural-Female', 'bn-BD-NabanitaNeural-Female', 'bn-BD-PradeepNeural-Male', 'bn-IN-BashkarNeural-Male', 'bn-IN-TanishaaNeural-Female', 'bs-BA-GoranNeural-Male', 'bs-BA-VesnaNeural-Female', 'ca-ES-EnricNeural-Male', 'ca-ES-JoanaNeural-Female', 'cs-CZ-AntoninNeural-Male', 'cs-CZ-VlastaNeural-Female', 'cy-GB-AledNeural-Male', 'cy-GB-NiaNeural-Female', 'da-DK-ChristelNeural-Female', 'da-DK-JeppeNeural-Male', 'de-AT-IngridNeural-Female', 'de-AT-JonasNeural-Male', 'de-CH-JanNeural-Male', 'de-CH-LeniNeural-Female', 'de-DE-AmalaNeural-Female', 'de-DE-ConradNeural-Male', 'de-DE-KatjaNeural-Female', 'de-DE-KillianNeural-Male', 'el-GR-AthinaNeural-Female', 'el-GR-NestorasNeural-Male', 'en-AU-NatashaNeural-Female', 'en-AU-WilliamNeural-Male', 'en-CA-ClaraNeural-Female', 'en-CA-LiamNeural-Male', 'en-GB-LibbyNeural-Female', 'en-GB-MaisieNeural-Female', 'en-GB-RyanNeural-Male', 'en-GB-SoniaNeural-Female', 'en-GB-ThomasNeural-Male', 'en-HK-SamNeural-Male', 'en-HK-YanNeural-Female', 'en-IE-ConnorNeural-Male', 'en-IE-EmilyNeural-Female', 'en-IN-NeerjaExpressiveNeural-Female', 'en-IN-NeerjaNeural-Female', 'en-IN-PrabhatNeural-Male', 'en-KE-AsiliaNeural-Female', 'en-KE-ChilembaNeural-Male', 'en-NG-AbeoNeural-Male', 'en-NG-EzinneNeural-Female', 'en-NZ-MitchellNeural-Male', 'en-NZ-MollyNeural-Female', 'en-PH-JamesNeural-Male', 'en-PH-RosaNeural-Female', 'en-SG-LunaNeural-Female', 'en-SG-WayneNeural-Male', 'en-TZ-ElimuNeural-Male', 'en-TZ-ImaniNeural-Female', 'en-US-AnaNeural-Female', 'en-US-AriaNeural-Female', 'en-US-ChristopherNeural-Male', 'en-US-EricNeural-Male', 'en-US-GuyNeural-Male', 'en-US-JennyNeural-Female', 'en-US-MichelleNeural-Female', 'en-US-RogerNeural-Male', 'en-US-SteffanNeural-Male', 'en-ZA-LeahNeural-Female', 'en-ZA-LukeNeural-Male', 'es-AR-ElenaNeural-Female', 'es-AR-TomasNeural-Male', 'es-BO-MarceloNeural-Male', 'es-BO-SofiaNeural-Female', 'es-CL-CatalinaNeural-Female', 'es-CL-LorenzoNeural-Male', 'es-CO-GonzaloNeural-Male', 'es-CO-SalomeNeural-Female', 'es-CR-JuanNeural-Male', 'es-CR-MariaNeural-Female', 'es-CU-BelkysNeural-Female', 'es-CU-ManuelNeural-Male', 'es-DO-EmilioNeural-Male', 'es-DO-RamonaNeural-Female', 'es-EC-AndreaNeural-Female', 'es-EC-LuisNeural-Male', 'es-ES-AlvaroNeural-Male', 'es-ES-ElviraNeural-Female', 'es-GQ-JavierNeural-Male', 'es-GQ-TeresaNeural-Female', 'es-GT-AndresNeural-Male', 'es-GT-MartaNeural-Female', 'es-HN-CarlosNeural-Male', 'es-HN-KarlaNeural-Female', 'es-MX-DaliaNeural-Female', 'es-MX-JorgeNeural-Male', 'es-NI-FedericoNeural-Male', 'es-NI-YolandaNeural-Female', 'es-PA-MargaritaNeural-Female', 'es-PA-RobertoNeural-Male', 'es-PE-AlexNeural-Male', 'es-PE-CamilaNeural-Female', 'es-PR-KarinaNeural-Female', 'es-PR-VictorNeural-Male', 'es-PY-MarioNeural-Male', 'es-PY-TaniaNeural-Female', 'es-SV-LorenaNeural-Female', 'es-SV-RodrigoNeural-Male', 'es-US-AlonsoNeural-Male', 'es-US-PalomaNeural-Female', 'es-UY-MateoNeural-Male', 'es-UY-ValentinaNeural-Female', 'es-VE-PaolaNeural-Female', 'es-VE-SebastianNeural-Male', 'et-EE-AnuNeural-Female', 'et-EE-KertNeural-Male', 'fa-IR-DilaraNeural-Female', 'fa-IR-FaridNeural-Male', 'fi-FI-HarriNeural-Male', 'fi-FI-NooraNeural-Female', 'fil-PH-AngeloNeural-Male', 'fil-PH-BlessicaNeural-Female', 'fr-BE-CharlineNeural-Female', 'fr-BE-GerardNeural-Male', 'fr-CA-AntoineNeural-Male', 'fr-CA-JeanNeural-Male', 'fr-CA-SylvieNeural-Female', 'fr-CH-ArianeNeural-Female', 'fr-CH-FabriceNeural-Male', 'fr-FR-DeniseNeural-Female', 'fr-FR-EloiseNeural-Female', 'fr-FR-HenriNeural-Male', 'ga-IE-ColmNeural-Male', 'ga-IE-OrlaNeural-Female', 'gl-ES-RoiNeural-Male', 'gl-ES-SabelaNeural-Female', 'gu-IN-DhwaniNeural-Female', 'gu-IN-NiranjanNeural-Male', 'he-IL-AvriNeural-Male', 'he-IL-HilaNeural-Female', 'hi-IN-MadhurNeural-Male', 'hi-IN-SwaraNeural-Female', 'hr-HR-GabrijelaNeural-Female', 'hr-HR-SreckoNeural-Male', 'hu-HU-NoemiNeural-Female', 'hu-HU-TamasNeural-Male', 'id-ID-ArdiNeural-Male', 'id-ID-GadisNeural-Female', 'is-IS-GudrunNeural-Female', 'is-IS-GunnarNeural-Male', 'it-IT-DiegoNeural-Male', 'it-IT-ElsaNeural-Female', 'it-IT-IsabellaNeural-Female', 'ja-JP-KeitaNeural-Male', 'ja-JP-NanamiNeural-Female', 'jv-ID-DimasNeural-Male', 'jv-ID-SitiNeural-Female', 'ka-GE-EkaNeural-Female', 'ka-GE-GiorgiNeural-Male', 'kk-KZ-AigulNeural-Female', 'kk-KZ-DauletNeural-Male', 'km-KH-PisethNeural-Male', 'km-KH-SreymomNeural-Female', 'kn-IN-GaganNeural-Male', 'kn-IN-SapnaNeural-Female', 'ko-KR-InJoonNeural-Male', 'ko-KR-SunHiNeural-Female', 'lo-LA-ChanthavongNeural-Male', 'lo-LA-KeomanyNeural-Female', 'lt-LT-LeonasNeural-Male', 'lt-LT-OnaNeural-Female', 'lv-LV-EveritaNeural-Female', 'lv-LV-NilsNeural-Male', 'mk-MK-AleksandarNeural-Male', 'mk-MK-MarijaNeural-Female', 'ml-IN-MidhunNeural-Male', 'ml-IN-SobhanaNeural-Female', 'mn-MN-BataaNeural-Male', 'mn-MN-YesuiNeural-Female', 'mr-IN-AarohiNeural-Female', 'mr-IN-ManoharNeural-Male', 'ms-MY-OsmanNeural-Male', 'ms-MY-YasminNeural-Female', 'mt-MT-GraceNeural-Female', 'mt-MT-JosephNeural-Male', 'my-MM-NilarNeural-Female', 'my-MM-ThihaNeural-Male', 'nb-NO-FinnNeural-Male', 'nb-NO-PernilleNeural-Female', 'ne-NP-HemkalaNeural-Female', 'ne-NP-SagarNeural-Male', 'nl-BE-ArnaudNeural-Male', 'nl-BE-DenaNeural-Female', 'nl-NL-ColetteNeural-Female', 'nl-NL-FennaNeural-Female', 'nl-NL-MaartenNeural-Male', 'pl-PL-MarekNeural-Male', 'pl-PL-ZofiaNeural-Female', 'ps-AF-GulNawazNeural-Male', 'ps-AF-LatifaNeural-Female', 'pt-BR-AntonioNeural-Male', 'pt-BR-FranciscaNeural-Female', 'pt-PT-DuarteNeural-Male', 'pt-PT-RaquelNeural-Female', 'ro-RO-AlinaNeural-Female', 'ro-RO-EmilNeural-Male', 'ru-RU-DmitryNeural-Male', 'ru-RU-SvetlanaNeural-Female', 'si-LK-SameeraNeural-Male', 'si-LK-ThiliniNeural-Female', 'sk-SK-LukasNeural-Male', 'sk-SK-ViktoriaNeural-Female', 'sl-SI-PetraNeural-Female', 'sl-SI-RokNeural-Male', 'so-SO-MuuseNeural-Male', 'so-SO-UbaxNeural-Female', 'sq-AL-AnilaNeural-Female', 'sq-AL-IlirNeural-Male', 'sr-RS-NicholasNeural-Male', 'sr-RS-SophieNeural-Female', 'su-ID-JajangNeural-Male', 'su-ID-TutiNeural-Female', 'sv-SE-MattiasNeural-Male', 'sv-SE-SofieNeural-Female', 'sw-KE-RafikiNeural-Male', 'sw-KE-ZuriNeural-Female', 'sw-TZ-DaudiNeural-Male', 'sw-TZ-RehemaNeural-Female', 'ta-IN-PallaviNeural-Female', 'ta-IN-ValluvarNeural-Male', 'ta-LK-KumarNeural-Male', 'ta-LK-SaranyaNeural-Female', 'ta-MY-KaniNeural-Female', 'ta-MY-SuryaNeural-Male', 'ta-SG-AnbuNeural-Male', 'ta-SG-VenbaNeural-Female', 'te-IN-MohanNeural-Male', 'te-IN-ShrutiNeural-Female', 'th-TH-NiwatNeural-Male', 'th-TH-PremwadeeNeural-Female', 'tr-TR-AhmetNeural-Male', 'tr-TR-EmelNeural-Female', 'uk-UA-OstapNeural-Male', 'uk-UA-PolinaNeural-Female', 'ur-IN-GulNeural-Female', 'ur-IN-SalmanNeural-Male', 'ur-PK-AsadNeural-Male', 'ur-PK-UzmaNeural-Female', 'uz-UZ-MadinaNeural-Female', 'uz-UZ-SardorNeural-Male', 'vi-VN-HoaiMyNeural-Female', 'vi-VN-NamMinhNeural-Male', 'zh-CN-XiaoxiaoNeural-Female', 'zh-CN-XiaoyiNeural-Female', 'zh-CN-YunjianNeural-Male', 'zh-CN-YunxiNeural-Male', 'zh-CN-YunxiaNeural-Male', 'zh-CN-YunyangNeural-Male', 'zh-CN-liaoning-XiaobeiNeural-Female', 'zh-CN-shaanxi-XiaoniNeural-Female']
### voices
with capture.capture_output() as cap:
os.system('mkdir downloads')
os.system('mkdir logs')
os.system('mkdir weights')
os.system('mkdir downloads')
del cap
def print_tree_directory(root_dir, indent=''):
if not os.path.exists(root_dir):
print(f"{indent}Invalid directory or file: {root_dir}")
return
items = os.listdir(root_dir)
for index, item in enumerate(sorted(items)):
item_path = os.path.join(root_dir, item)
is_last_item = index == len(items) - 1
if os.path.isfile(item_path) and item_path.endswith('.zip'):
with zipfile.ZipFile(item_path, 'r') as zip_file:
print(f"{indent}{'└──' if is_last_item else '├──'} {item} (zip file)")
zip_contents = zip_file.namelist()
for zip_item in sorted(zip_contents):
print(f"{indent}{' ' if is_last_item else '│ '}{zip_item}")
else:
print(f"{indent}{'└──' if is_last_item else '├──'} {item}")
if os.path.isdir(item_path):
new_indent = indent + (' ' if is_last_item else '│ ')
print_tree_directory(item_path, new_indent)
def upload_model_list():
weight_root = "weights"
models = []
for name in os.listdir(weight_root):
if name.endswith(".pth"):
models.append(name)
index_root = "logs"
index_paths = []
for name in os.listdir(index_root):
if name.endswith(".index"):
index_paths.append("logs/"+name)
print(models, index_paths)
return models, index_paths
def manual_download(url, dst):
token = os.getenv("YOUR_HF_TOKEN")
user_header = f"\"Authorization: Bearer {token}\""
if 'drive.google' in url:
print("Drive link")
if 'folders' in url:
print("folder")
os.system(f'gdown --folder "{url}" -O {dst} --fuzzy -c')
else:
print("single")
os.system(f'gdown "{url}" -O {dst} --fuzzy -c')
elif 'huggingface' in url:
print("HuggingFace link")
if '/blob/' in url or '/resolve/' in url:
if '/blob/' in url:
url = url.replace('/blob/', '/resolve/')
#parsed_link = '\n{}\n\tout={}'.format(url, unquote(url.split('/')[-1]))
#os.system(f'echo -e "{parsed_link}" | aria2c --header={user_header} --console-log-level=error --summary-interval=10 -i- -j5 -x16 -s16 -k1M -c -d "{dst}"')
os.system(f"wget -P {dst} {url}")
else:
os.system(f"git clone {url} {dst+'repo/'}")
elif 'http' in url or 'magnet' in url:
parsed_link = '"{}"'.format(url)
os.system(f'aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -j5 -x16 -s16 -k1M -c -d {dst} -Z {parsed_link}')
def download_list(text_downloads):
try:
urls = [elem.strip() for elem in text_downloads.split(',')]
except:
return 'No valid link'
os.system('mkdir downloads')
os.system('mkdir logs')
os.system('mkdir weights')
path_download = "downloads/"
for url in urls:
manual_download(url, path_download)
# Tree
print('####################################')
print_tree_directory("downloads", indent='')
print('####################################')
# Place files
select_zip_and_rar_files("downloads/")
models, _ = upload_model_list()
os.system("rm -rf downloads/repo")
return f"Downloaded = {models}"
def select_zip_and_rar_files(directory_path="downloads/"):
#filter
zip_files = []
rar_files = []
for file_name in os.listdir(directory_path):
if file_name.endswith(".zip"):
zip_files.append(file_name)
elif file_name.endswith(".rar"):
rar_files.append(file_name)
# extract
for file_name in zip_files:
file_path = os.path.join(directory_path, file_name)
with zipfile.ZipFile(file_path, 'r') as zip_ref:
zip_ref.extractall(directory_path)
for file_name in rar_files:
file_path = os.path.join(directory_path, file_name)
with rarfile.RarFile(file_path, 'r') as rar_ref:
rar_ref.extractall(directory_path)
# set in path
def move_files_with_extension(src_dir, extension, destination_dir):
for root, _, files in os.walk(src_dir):
for file_name in files:
if file_name.endswith(extension):
source_file = os.path.join(root, file_name)
destination = os.path.join(destination_dir, file_name)
shutil.move(source_file, destination)
move_files_with_extension(directory_path, ".index", "logs/")
move_files_with_extension(directory_path, ".pth", "weights/")
return 'Download complete'
def custom_model_voice_enable(enable_custom_voice):
if enable_custom_voice:
os.environ["VOICES_MODELS"] = 'ENABLE'
else:
os.environ["VOICES_MODELS"] = 'DISABLE'
models, index_paths = upload_model_list()
f0_methods_voice = ["pm", "harvest", "crepe", "rmvpe"]
from voice_main import ClassVoices
voices = ClassVoices()
'''
def translate_from_video(video, WHISPER_MODEL_SIZE, batch_size, compute_type,
TRANSLATE_AUDIO_TO, min_speakers, max_speakers,
tts_voice00, tts_voice01,tts_voice02,tts_voice03,tts_voice04,tts_voice05):
YOUR_HF_TOKEN = os.getenv("My_hf_token")
create_translated_audio(result_diarize, audio_files, Output_name_file)
os.system("rm audio_dub_stereo.wav")
os.system("ffmpeg -i audio_dub_solo.wav -ac 1 audio_dub_stereo.wav")
os.system(f"rm {mix_audio}")
os.system(f'ffmpeg -y -i audio.wav -i audio_dub_stereo.wav -filter_complex "[0:0]volume=0.15[a];[1:0]volume=1.90[b];[a][b]amix=inputs=2:duration=longest" -c:a libmp3lame {mix_audio}')
os.system(f"rm {video_output}")
os.system(f"ffmpeg -i {OutputFile} -i {mix_audio} -c:v copy -c:a copy -map 0:v -map 1:a -shortest {video_output}")
return video_output
'''
def translate_from_video(
video,
YOUR_HF_TOKEN,
preview=False,
WHISPER_MODEL_SIZE="large-v1",
batch_size=16,
compute_type="float16",
SOURCE_LANGUAGE= "Automatic detection",
TRANSLATE_AUDIO_TO="English (en)",
min_speakers=1,
max_speakers=2,
tts_voice00="en-AU-WilliamNeural-Male",
tts_voice01="en-CA-ClaraNeural-Female",
tts_voice02="en-GB-ThomasNeural-Male",
tts_voice03="en-GB-SoniaNeural-Female",
tts_voice04="en-NZ-MitchellNeural-Male",
tts_voice05="en-GB-MaisieNeural-Female",
video_output="video_dub.mp4",
AUDIO_MIX_METHOD='Adjusting volumes and mixing audio',
progress=gr.Progress(),
):
if YOUR_HF_TOKEN == "" or YOUR_HF_TOKEN == None:
YOUR_HF_TOKEN = os.getenv("YOUR_HF_TOKEN")
if YOUR_HF_TOKEN == None:
print('No valid token')
return "No valid token"
else:
os.environ["YOUR_HF_TOKEN"] = YOUR_HF_TOKEN
video = video if isinstance(video, str) else video.name
print(video)
if "SET_LIMIT" == os.getenv("DEMO"):
preview=True
print("DEMO; set preview=True; The generation is **limited to 10 seconds** to prevent errors with the CPU. If you use a GPU, you won't have any of these limitations.")
AUDIO_MIX_METHOD='Adjusting volumes and mixing audio'
print("DEMO; set Adjusting volumes and mixing audio")
WHISPER_MODEL_SIZE="medium"
print("DEMO; set whisper model to medium")
LANGUAGES = {
'Automatic detection': 'Automatic detection',
'Arabic (ar)': 'ar',
'Chinese (zh)': 'zh',
'Czech (cs)': 'cs',
'Danish (da)': 'da',
'Dutch (nl)': 'nl',
'English (en)': 'en',
'Finnish (fi)': 'fi',
'French (fr)': 'fr',
'German (de)': 'de',
'Greek (el)': 'el',
'Hebrew (he)': 'he',
'Hungarian (hu)': 'hu',
'Italian (it)': 'it',
'Japanese (ja)': 'ja',
'Korean (ko)': 'ko',
'Persian (fa)': 'fa',
'Polish (pl)': 'pl',
'Portuguese (pt)': 'pt',
'Russian (ru)': 'ru',
'Spanish (es)': 'es',
'Turkish (tr)': 'tr',
'Ukrainian (uk)': 'uk',
'Urdu (ur)': 'ur',
'Vietnamese (vi)': 'vi',
'Hindi (hi)': 'hi',
}
TRANSLATE_AUDIO_TO = LANGUAGES[TRANSLATE_AUDIO_TO]
SOURCE_LANGUAGE = LANGUAGES[SOURCE_LANGUAGE]
if not os.path.exists('audio'):
os.makedirs('audio')
if not os.path.exists('audio2/audio'):
os.makedirs('audio2/audio')
# Check GPU
device = "cuda" if torch.cuda.is_available() else "cpu"
compute_type = "float32" if device == "cpu" else compute_type
OutputFile = 'Video.mp4'
audio_wav = "audio.wav"
Output_name_file = "audio_dub_solo.ogg"
mix_audio = "audio_mix.mp3"
os.system("rm Video.mp4")
os.system("rm audio.webm")
os.system("rm audio.wav")
progress(0.15, desc="Processing video...")
if os.path.exists(video):
if preview:
print('Creating a preview video of 10 seconds, to disable this option, go to advanced settings and turn off preview.')
os.system(f'ffmpeg -y -i "{video}" -ss 00:00:20 -t 00:00:10 -c:v libx264 -c:a aac -strict experimental Video.mp4')
else:
# Check if the file ends with ".mp4" extension
if video.endswith(".mp4"):
destination_path = os.path.join(os.getcwd(), "Video.mp4")
shutil.copy(video, destination_path)
else:
print("File does not have the '.mp4' extension. Converting video.")
os.system(f'ffmpeg -y -i "{video}" -c:v libx264 -c:a aac -strict experimental Video.mp4')
for i in range (120):
time.sleep(1)
print('process video...')
if os.path.exists(OutputFile):
time.sleep(1)
os.system("ffmpeg -y -i Video.mp4 -vn -acodec pcm_s16le -ar 44100 -ac 2 audio.wav")
time.sleep(1)
break
if i == 119:
print('Error processing video')
return
for i in range (120):
time.sleep(1)
print('process audio...')
if os.path.exists(audio_wav):
break
if i == 60 and round(os.path.getsize(f'{OutputFile}') / (1024 * 1024), 1) == 0.0:
os.system('rm intermediate.aac') # only for demo
os.system(f'ffmpeg -i {video} -ss 00:00:00 -t 00:00:10 -vn -acodec aac -strict -2 intermediate.aac')
time.sleep(5)
os.system('ffmpeg -i intermediate.aac -acodec pcm_s16le -ar 44100 -ac 2 audio.wav')
if i == 119:
print("Error can't create the audio")
return
os.system('rm intermediate.aac')
else:
if preview:
print('Creating a preview from the link, 10 seconds to disable this option, go to advanced settings and turn off preview.')
#https://github.com/yt-dlp/yt-dlp/issues/2220
mp4_ = f'yt-dlp -f "mp4" --downloader ffmpeg --downloader-args "ffmpeg_i: -ss 00:00:20 -t 00:00:10" --force-overwrites --max-downloads 1 --no-warnings --no-abort-on-error --ignore-no-formats-error --restrict-filenames -o {OutputFile} {video}'
wav_ = "ffmpeg -y -i Video.mp4 -vn -acodec pcm_s16le -ar 44100 -ac 2 audio.wav"
os.system(mp4_)
os.system(wav_)
else:
mp4_ = f'yt-dlp -f "mp4" --force-overwrites --max-downloads 1 --no-warnings --no-abort-on-error --ignore-no-formats-error --restrict-filenames -o {OutputFile} {video}'
wav_ = f'python -m yt_dlp --output {audio_wav} --force-overwrites --max-downloads 1 --no-warnings --no-abort-on-error --ignore-no-formats-error --extract-audio --audio-format wav {video}'
os.system(wav_)
for i in range (120):
time.sleep(1)
print('process audio...')
if os.path.exists(audio_wav) and not os.path.exists('audio.webm'):
time.sleep(1)
os.system(mp4_)
break
if i == 119:
print('Error donwloading the audio')
return
print("Set file complete.")
progress(0.30, desc="Transcribing...")
SOURCE_LANGUAGE = None if SOURCE_LANGUAGE == 'Automatic detection' else SOURCE_LANGUAGE
# 1. Transcribe with original whisper (batched)
with capture.capture_output() as cap:
model = whisperx.load_model(
WHISPER_MODEL_SIZE,
device,
compute_type=compute_type,
language= SOURCE_LANGUAGE,
)
del cap
audio = whisperx.load_audio(audio_wav)
result = model.transcribe(audio, batch_size=batch_size)
gc.collect(); torch.cuda.empty_cache(); del model
print("Transcript complete")
# 2. Align whisper output
progress(0.45, desc="Aligning...")
DAMHF.update(DAMT) #lang align
EXTRA_ALIGN = {
"hi": "theainerd/Wav2Vec2-large-xlsr-hindi"
} # add new align models here
#print(result['language'], DAM.keys(), EXTRA_ALIGN.keys())
if not result['language'] in DAMHF.keys() and not result['language'] in EXTRA_ALIGN.keys():
audio = result = None
print("Automatic detection: Source language not incompatible")
print(f"Detected language {LANG_TRANSCRIPT[result['language']]} incompatible, you can select the source language to avoid this error.")
return
model_a, metadata = whisperx.load_align_model(
language_code=result["language"],
device=device,
model_name = None if result["language"] in DAMHF.keys() else EXTRA_ALIGN[result["language"]]
)
result = whisperx.align(
result["segments"],
model_a,
metadata,
audio,
device,
return_char_alignments=True,
)
gc.collect(); torch.cuda.empty_cache(); del model_a
print("Align complete")
if result['segments'] == []:
print('No active speech found in audio')
return
# 3. Assign speaker labels
progress(0.60, desc="Diarizing...")
with capture.capture_output() as cap:
diarize_model = whisperx.DiarizationPipeline(use_auth_token=YOUR_HF_TOKEN, device=device)
del cap
diarize_segments = diarize_model(
audio_wav,
min_speakers=min_speakers,
max_speakers=max_speakers)
result_diarize = whisperx.assign_word_speakers(diarize_segments, result)
gc.collect(); torch.cuda.empty_cache(); del diarize_model
print("Diarize complete")
progress(0.75, desc="Translating...")
if TRANSLATE_AUDIO_TO == "zh":
TRANSLATE_AUDIO_TO = "zh-CN"
if TRANSLATE_AUDIO_TO == "he":
TRANSLATE_AUDIO_TO = "iw"
result_diarize['segments'] = translate_text(result_diarize['segments'], TRANSLATE_AUDIO_TO)
print("Translation complete")
progress(0.85, desc="Text_to_speech...")
audio_files = []
speakers_list = []
# Mapping speakers to voice variables
speaker_to_voice = {
'SPEAKER_00': tts_voice00,
'SPEAKER_01': tts_voice01,
'SPEAKER_02': tts_voice02,
'SPEAKER_03': tts_voice03,
'SPEAKER_04': tts_voice04,
'SPEAKER_05': tts_voice05
}
for segment in tqdm(result_diarize['segments']):
text = segment['text']
start = segment['start']
end = segment['end']
try:
speaker = segment['speaker']
except KeyError:
segment['speaker'] = "SPEAKER_99"
speaker = segment['speaker']
print(f"NO SPEAKER DETECT IN SEGMENT: TTS auxiliary will be used in the segment time {segment['start'], segment['text']}")
# make the tts audio
filename = f"audio/{start}.ogg"
if speaker in speaker_to_voice and speaker_to_voice[speaker] != 'None':
make_voice_gradio(text, speaker_to_voice[speaker], filename, TRANSLATE_AUDIO_TO)
elif speaker == "SPEAKER_99":
try:
tts = gTTS(text, lang=TRANSLATE_AUDIO_TO)
tts.save(filename)
print('Using GTTS')
except:
tts = gTTS('a', lang=TRANSLATE_AUDIO_TO)
tts.save(filename)
print('Error: Audio will be replaced.')
# duration
duration_true = end - start
duration_tts = librosa.get_duration(filename=filename)
# porcentaje
porcentaje = duration_tts / duration_true
if porcentaje > 2.1:
porcentaje = 2.1
elif porcentaje <= 1.2 and porcentaje >= 0.8:
porcentaje = 1.0
elif porcentaje <= 0.79:
porcentaje = 0.8
# Smoth and round
porcentaje = round(porcentaje+0.0, 1)
# apply aceleration or opposite to the audio file in audio2 folder
os.system(f"ffmpeg -y -loglevel panic -i {filename} -filter:a atempo={porcentaje} audio2/{filename}")
duration_create = librosa.get_duration(filename=f"audio2/{filename}")
audio_files.append(filename)
speakers_list.append(speaker)
# custom voice
if os.getenv('VOICES_MODELS') == 'ENABLE':
progress(0.90, desc="Applying customized voices...")
voices(speakers_list, audio_files)
# replace files with the accelerates
os.system("mv -f audio2/audio/*.ogg audio/")
os.system(f"rm {Output_name_file}")
progress(0.95, desc="Creating final translated video...")
create_translated_audio(result_diarize, audio_files, Output_name_file)
os.system(f"rm {mix_audio}")
# TYPE MIX AUDIO
if AUDIO_MIX_METHOD == 'Adjusting volumes and mixing audio':
# volume mix
os.system(f'ffmpeg -y -i {audio_wav} -i {Output_name_file} -filter_complex "[0:0]volume=0.15[a];[1:0]volume=1.90[b];[a][b]amix=inputs=2:duration=longest" -c:a libmp3lame {mix_audio}')
else:
try:
# background mix
os.system(f'ffmpeg -i {audio_wav} -i {Output_name_file} -filter_complex "[1:a]asplit=2[sc][mix];[0:a][sc]sidechaincompress=threshold=0.003:ratio=20[bg]; [bg][mix]amerge[final]" -map [final] {mix_audio}')
except:
# volume mix except
os.system(f'ffmpeg -y -i {audio_wav} -i {Output_name_file} -filter_complex "[0:0]volume=0.25[a];[1:0]volume=1.80[b];[a][b]amix=inputs=2:duration=longest" -c:a libmp3lame {mix_audio}')
os.system(f"rm {video_output}")
os.system(f"ffmpeg -i {OutputFile} -i {mix_audio} -c:v copy -c:a copy -map 0:v -map 1:a -shortest {video_output}")
return video_output
import sys
class Logger:
def __init__(self, filename):
self.terminal = sys.stdout
self.log = open(filename, "w")
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
self.terminal.flush()
self.log.flush()
def isatty(self):
return False
sys.stdout = Logger("output.log")
def read_logs():
sys.stdout.flush()
with open("output.log", "r") as f:
return f.read()
def submit_file_func(file):
print(file.name)
return file.name, file.name
# max tts
MAX_TTS = 6
theme='Taithrah/Minimal'
with gr.Blocks(theme=theme) as demo:
gr.Markdown(title)
gr.Markdown(description)
### link
with gr.Tab("Audio Translation via Video Link"):
with gr.Row():
with gr.Column():
blink_input = gr.Textbox(label="Media link.", info="Example: www.youtube.com/watch?v=g_9rPvbENUw", placeholder="URL goes here...")
bSOURCE_LANGUAGE = gr.Dropdown(['Automatic detection', 'Arabic (ar)', 'Chinese (zh)', 'Czech (cs)', 'Danish (da)', 'Dutch (nl)', 'English (en)', 'Finnish (fi)', 'French (fr)', 'German (de)', 'Greek (el)', 'Hebrew (he)', 'Hindi (hi)', 'Hungarian (hu)', 'Italian (it)', 'Japanese (ja)', 'Korean (ko)', 'Persian (fa)', 'Polish (pl)', 'Portuguese (pt)', 'Russian (ru)', 'Spanish (es)', 'Turkish (tr)', 'Ukrainian (uk)', 'Urdu (ur)', 'Vietnamese (vi)'], value='Automatic detection',label = 'Source language', info="This is the original language of the video")
bTRANSLATE_AUDIO_TO = gr.Dropdown(['Arabic (ar)', 'Chinese (zh)', 'Czech (cs)', 'Danish (da)', 'Dutch (nl)', 'English (en)', 'Finnish (fi)', 'French (fr)', 'German (de)', 'Greek (el)', 'Hebrew (he)', 'Hindi (hi)', 'Hungarian (hu)', 'Italian (it)', 'Japanese (ja)', 'Korean (ko)', 'Persian (fa)', 'Polish (pl)', 'Portuguese (pt)', 'Russian (ru)', 'Spanish (es)', 'Turkish (tr)', 'Ukrainian (uk)', 'Urdu (ur)', 'Vietnamese (vi)'], value='English (en)',label = 'Translate audio to', info="Select the target language, and make sure to select the language corresponding to the speakers of the target language to avoid errors in the process.")
bline_ = gr.HTML("<hr></h2>")
gr.Markdown("Select how many people are speaking in the video.")
bmin_speakers = gr.Slider(1, MAX_TTS, default=1, label="min_speakers", step=1, visible=False)
bmax_speakers = gr.Slider(1, MAX_TTS, value=2, step=1, label="Max speakers", interative=True)
gr.Markdown("Select the voice you want for each speaker.")
def bsubmit(value):
visibility_dict = {
f'btts_voice{i:02d}': gr.update(visible=i < value) for i in range(6)
}
return [value for value in visibility_dict.values()]
btts_voice00 = gr.Dropdown(list_tts, value='en-AU-WilliamNeural-Male', label = 'TTS Speaker 1', visible=True, interactive= True)
btts_voice01 = gr.Dropdown(list_tts, value='en-CA-ClaraNeural-Female', label = 'TTS Speaker 2', visible=True, interactive= True)
btts_voice02 = gr.Dropdown(list_tts, value='en-GB-ThomasNeural-Male', label = 'TTS Speaker 3', visible=False, interactive= True)
btts_voice03 = gr.Dropdown(list_tts, value='en-GB-SoniaNeural-Female', label = 'TTS Speaker 4', visible=False, interactive= True)
btts_voice04 = gr.Dropdown(list_tts, value='en-NZ-MitchellNeural-Male', label = 'TTS Speaker 5', visible=False, interactive= True)
btts_voice05 = gr.Dropdown(list_tts, value='en-GB-MaisieNeural-Female', label = 'TTS Speaker 6', visible=False, interactive= True)
bmax_speakers.change(bsubmit, bmax_speakers, [btts_voice00, btts_voice01, btts_voice02, btts_voice03, btts_voice04, btts_voice05])
with gr.Column():
with gr.Accordion("Advanced Settings", open=False):
bAUDIO_MIX = gr.Dropdown(['Mixing audio with sidechain compression', 'Adjusting volumes and mixing audio'], value='Adjusting volumes and mixing audio', label = 'Audio Mixing Method', info="Mix original and translated audio files to create a customized, balanced output with two available mixing modes.")
gr.HTML("<hr></h2>")
gr.Markdown("Default configuration of Whisper.")
bWHISPER_MODEL_SIZE = gr.inputs.Dropdown(['tiny', 'base', 'small', 'medium', 'large-v1', 'large-v2'], default=whisper_model_default, label="Whisper model")
bbatch_size = gr.inputs.Slider(1, 32, default=16, label="Batch size", step=1)
bcompute_type = gr.inputs.Dropdown(list_compute_type, default=compute_type_default, label="Compute type")
gr.HTML("<hr></h2>")
bVIDEO_OUTPUT_NAME = gr.Textbox(label="Translated file name" ,value="video_output.mp4", info="The name of the output file")
bPREVIEW = gr.Checkbox(label="Preview", info="Preview cuts the video to only 10 seconds for testing purposes. Please deactivate it to retrieve the full video duration.")
with gr.Column(variant='compact'):
with gr.Row():
text_button = gr.Button("TRANSLATE")
with gr.Row():
blink_output = gr.Video() #gr.outputs.File(label="DOWNLOAD TRANSLATED VIDEO") # gr.Video()
bline_ = gr.HTML("<hr></h2>")
if os.getenv("YOUR_HF_TOKEN") == None or os.getenv("YOUR_HF_TOKEN") == "":
bHFKEY = gr.Textbox(visible= True, label="HF Token", info="One important step is to accept the license agreement for using Pyannote. You need to have an account on Hugging Face and accept the license to use the models: https://huggingface.co/pyannote/speaker-diarization and https://huggingface.co/pyannote/segmentation. Get your KEY TOKEN here: https://hf.co/settings/tokens", placeholder="Token goes here...")
else:
bHFKEY = gr.Textbox(visible= False, label="HF Token", info="One important step is to accept the license agreement for using Pyannote. You need to have an account on Hugging Face and accept the license to use the models: https://huggingface.co/pyannote/speaker-diarization and https://huggingface.co/pyannote/segmentation. Get your KEY TOKEN here: https://hf.co/settings/tokens", placeholder="Token goes here...")
gr.Examples(
examples=[
[
"https://www.youtube.com/watch?v=5ZeHtRKHl7Y",
"",
False,
"large-v2",
16,
"float16",
"Japanese (ja)",
"English (en)",
1,
2,
'en-CA-ClaraNeural-Female',
'en-AU-WilliamNeural-Male',
'en-GB-ThomasNeural-Male',
'en-GB-SoniaNeural-Female',
'en-NZ-MitchellNeural-Male',
'en-GB-MaisieNeural-Female',
"video_output.mp4",
'Adjusting volumes and mixing audio',
],
],
fn=translate_from_video,
inputs=[
blink_input,
bHFKEY,
bPREVIEW,
bWHISPER_MODEL_SIZE,
bbatch_size,
bcompute_type,
bSOURCE_LANGUAGE,
bTRANSLATE_AUDIO_TO,
bmin_speakers,
bmax_speakers,
btts_voice00,
btts_voice01,
btts_voice02,
btts_voice03,
btts_voice04,
btts_voice05,
bVIDEO_OUTPUT_NAME,
bAUDIO_MIX
],
outputs=[blink_output],
cache_examples=False,
)
#### video
with gr.Tab("Audio Translation for a Video"):
with gr.Row():
with gr.Column():
#video_input = gr.UploadButton("Click to Upload a video", file_types=["video"], file_count="single") #gr.Video() # height=300,width=300
video_input = gr.File(label="Submit a short Video")
#link = gr.HTML()
#video_input.change(submit_file_func, video_input, [video_input, link], show_progress='full')
SOURCE_LANGUAGE = gr.Dropdown(['Automatic detection', 'Arabic (ar)', 'Chinese (zh)', 'Czech (cs)', 'Danish (da)', 'Dutch (nl)', 'English (en)', 'Finnish (fi)', 'French (fr)', 'German (de)', 'Greek (el)', 'Hebrew (he)', 'Hindi (hi)', 'Hungarian (hu)', 'Italian (it)', 'Japanese (ja)', 'Korean (ko)', 'Persian (fa)', 'Polish (pl)', 'Portuguese (pt)', 'Russian (ru)', 'Spanish (es)', 'Turkish (tr)', 'Ukrainian (uk)', 'Urdu (ur)', 'Vietnamese (vi)'], value='Automatic detection',label = 'Source language', info="This is the original language of the video")
TRANSLATE_AUDIO_TO = gr.Dropdown(['Arabic (ar)', 'Chinese (zh)', 'Czech (cs)', 'Danish (da)', 'Dutch (nl)', 'English (en)', 'Finnish (fi)', 'French (fr)', 'German (de)', 'Greek (el)', 'Hebrew (he)', 'Hindi (hi)', 'Hungarian (hu)', 'Italian (it)', 'Japanese (ja)', 'Korean (ko)', 'Persian (fa)', 'Polish (pl)', 'Portuguese (pt)', 'Russian (ru)', 'Spanish (es)', 'Turkish (tr)', 'Ukrainian (uk)', 'Urdu (ur)', 'Vietnamese (vi)'], value='English (en)',label = 'Translate audio to', info="Select the target language, and make sure to select the language corresponding to the speakers of the target language to avoid errors in the process.")
line_ = gr.HTML("<hr></h2>")
gr.Markdown("Select how many people are speaking in the video.")
min_speakers = gr.Slider(1, MAX_TTS, default=1, label="min_speakers", step=1, visible=False)
max_speakers = gr.Slider(1, MAX_TTS, value=2, step=1, label="Max speakers", interative=True)
gr.Markdown("Select the voice you want for each speaker.")
def submit(value):
visibility_dict = {
f'tts_voice{i:02d}': gr.update(visible=i < value) for i in range(6)
}
return [value for value in visibility_dict.values()]
tts_voice00 = gr.Dropdown(list_tts, value='en-AU-WilliamNeural-Male', label = 'TTS Speaker 1', visible=True, interactive= True)
tts_voice01 = gr.Dropdown(list_tts, value='en-CA-ClaraNeural-Female', label = 'TTS Speaker 2', visible=True, interactive= True)
tts_voice02 = gr.Dropdown(list_tts, value='en-GB-ThomasNeural-Male', label = 'TTS Speaker 3', visible=False, interactive= True)
tts_voice03 = gr.Dropdown(list_tts, value='en-GB-SoniaNeural-Female', label = 'TTS Speaker 4', visible=False, interactive= True)
tts_voice04 = gr.Dropdown(list_tts, value='en-NZ-MitchellNeural-Male', label = 'TTS Speaker 5', visible=False, interactive= True)
tts_voice05 = gr.Dropdown(list_tts, value='en-GB-MaisieNeural-Female', label = 'TTS Speaker 6', visible=False, interactive= True)
max_speakers.change(submit, max_speakers, [tts_voice00, tts_voice01, tts_voice02, tts_voice03, tts_voice04, tts_voice05])
with gr.Column():
with gr.Accordion("Advanced Settings", open=False):
AUDIO_MIX = gr.Dropdown(['Mixing audio with sidechain compression', 'Adjusting volumes and mixing audio'], value='Adjusting volumes and mixing audio', label = 'Audio Mixing Method', info="Mix original and translated audio files to create a customized, balanced output with two available mixing modes.")
gr.HTML("<hr></h2>")
gr.Markdown("Default configuration of Whisper.")
WHISPER_MODEL_SIZE = gr.inputs.Dropdown(['tiny', 'base', 'small', 'medium', 'large-v1', 'large-v2'], default=whisper_model_default, label="Whisper model")
batch_size = gr.inputs.Slider(1, 32, default=16, label="Batch size", step=1)
compute_type = gr.inputs.Dropdown(list_compute_type, default=compute_type_default, label="Compute type")
gr.HTML("<hr></h2>")
VIDEO_OUTPUT_NAME = gr.Textbox(label="Translated file name" ,value="video_output.mp4", info="The name of the output file")
PREVIEW = gr.Checkbox(label="Preview", info="Preview cuts the video to only 10 seconds for testing purposes. Please deactivate it to retrieve the full video duration.")
with gr.Column(variant='compact'):
with gr.Row():
video_button = gr.Button("TRANSLATE", )
with gr.Row():
video_output = gr.Video() #gr.outputs.File(label="DOWNLOAD TRANSLATED VIDEO")
line_ = gr.HTML("<hr></h2>")
if os.getenv("YOUR_HF_TOKEN") == None or os.getenv("YOUR_HF_TOKEN") == "":
HFKEY = gr.Textbox(visible= True, label="HF Token", info="One important step is to accept the license agreement for using Pyannote. You need to have an account on Hugging Face and accept the license to use the models: https://huggingface.co/pyannote/speaker-diarization and https://huggingface.co/pyannote/segmentation. Get your KEY TOKEN here: https://hf.co/settings/tokens", placeholder="Token goes here...")
else:
HFKEY = gr.Textbox(visible= False, label="HF Token", info="One important step is to accept the license agreement for using Pyannote. You need to have an account on Hugging Face and accept the license to use the models: https://huggingface.co/pyannote/speaker-diarization and https://huggingface.co/pyannote/segmentation. Get your KEY TOKEN here: https://hf.co/settings/tokens", placeholder="Token goes here...")
gr.Examples(
examples=[
[
"./assets/Video_main.mp4",
"",
False,
"large-v2",
16,
"float16",
"Spanish (es)",
"English (en)",
1,
2,
'en-AU-WilliamNeural-Male',
'en-CA-ClaraNeural-Female',
'en-GB-ThomasNeural-Male',
'en-GB-SoniaNeural-Female',
'en-NZ-MitchellNeural-Male',
'en-GB-MaisieNeural-Female',
"video_output.mp4",
'Adjusting volumes and mixing audio',
],
],
fn=translate_from_video,
inputs=[
video_input,
HFKEY,
PREVIEW,
WHISPER_MODEL_SIZE,
batch_size,
compute_type,
SOURCE_LANGUAGE,
TRANSLATE_AUDIO_TO,
min_speakers,
max_speakers,
tts_voice00,
tts_voice01,
tts_voice02,
tts_voice03,
tts_voice04,
tts_voice05,
VIDEO_OUTPUT_NAME,
AUDIO_MIX,
],
outputs=[video_output],
cache_examples=False,
)
with gr.Tab("Custom voice RVC"):
with gr.Column():
with gr.Accordion("Download RVC Models", open=True):
url_links = gr.Textbox(label="URLs", value="",info="Automatically download the RVC models from the URL. You can use links from HuggingFace or Drive, and you can include several links, each one separated by a comma.", placeholder="urls here...", lines=1)
download_finish = gr.HTML()
download_button = gr.Button("DOWNLOAD MODELS")
def update_models():
models, index_paths = upload_model_list()
for i in range(8):
dict_models = {
f'model_voice_path{i:02d}': gr.update(choices=models) for i in range(8)
}
dict_index = {
f'file_index2_{i:02d}': gr.update(choices=index_paths) for i in range(8)
}
dict_changes = {**dict_models, **dict_index}
return [value for value in dict_changes.values()]
with gr.Column():
with gr.Accordion("Replace voice: TTS to RVC", open=False):
with gr.Column(variant='compact'):
with gr.Column():
gr.Markdown("### 1. To enable its use, mark it as enable.")
enable_custom_voice = gr.Checkbox(label="ENABLE", info="Check this to enable the use of the models.")
enable_custom_voice.change(custom_model_voice_enable, [enable_custom_voice], [])
gr.Markdown("### 2. Select a voice that will be applied to each TTS of each corresponding speaker and apply the configurations.")
gr.Markdown("Voice to apply to the first speaker.")
with gr.Row():
model_voice_path00 = gr.Dropdown(models, label = 'Model-1', visible=True, interactive= True)
file_index2_00 = gr.Dropdown(index_paths, label = 'Index-1', visible=True, interactive= True)
name_transpose00 = gr.Number(label = 'Transpose-1', value=0, visible=True, interactive= True)
gr.HTML("<hr></h2>")
gr.Markdown("Voice to apply to the second speaker.")
with gr.Row():
model_voice_path01 = gr.Dropdown(models, label='Model-2', visible=True, interactive=True)
file_index2_01 = gr.Dropdown(index_paths, label='Index-2', visible=True, interactive=True)
name_transpose01 = gr.Number(label='Transpose-2', value=0, visible=True, interactive=True)
gr.HTML("<hr></h2>")
gr.Markdown("Voice to apply to the third speaker.")
with gr.Row():
model_voice_path02 = gr.Dropdown(models, label='Model-3', visible=True, interactive=True)
file_index2_02 = gr.Dropdown(index_paths, label='Index-3', visible=True, interactive=True)
name_transpose02 = gr.Number(label='Transpose-3', value=0, visible=True, interactive=True)
gr.HTML("<hr></h2>")
gr.Markdown("Voice to apply to the fourth speaker.")
with gr.Row():
model_voice_path03 = gr.Dropdown(models, label='Model-4', visible=True, interactive=True)
file_index2_03 = gr.Dropdown(index_paths, label='Index-4', visible=True, interactive=True)
name_transpose03 = gr.Number(label='Transpose-4', value=0, visible=True, interactive=True)
gr.HTML("<hr></h2>")
gr.Markdown("Voice to apply to the fifth speaker.")
with gr.Row():
model_voice_path04 = gr.Dropdown(models, label='Model-5', visible=True, interactive=True)
file_index2_04 = gr.Dropdown(index_paths, label='Index-5', visible=True, interactive=True)
name_transpose04 = gr.Number(label='Transpose-5', value=0, visible=True, interactive=True)
gr.HTML("<hr></h2>")
gr.Markdown("Voice to apply to the sixth speaker.")
with gr.Row():
model_voice_path05 = gr.Dropdown(models, label='Model-6', visible=True, interactive=True)
file_index2_05 = gr.Dropdown(index_paths, label='Index-6', visible=True, interactive=True)
name_transpose05 = gr.Number(label='Transpose-6', value=0, visible=True, interactive=True)
gr.HTML("<hr></h2>")
gr.Markdown("- Voice to apply in case a speaker is not detected successfully.")
with gr.Row():
model_voice_path06 = gr.Dropdown(models, label='Model-Aux', visible=True, interactive=True)
file_index2_06 = gr.Dropdown(index_paths, label='Index-Aux', visible=True, interactive=True)
name_transpose06 = gr.Number(label='Transpose-Aux', value=0, visible=True, interactive=True)
gr.HTML("<hr></h2>")
with gr.Row():
f0_method_global = gr.Dropdown(f0_methods_voice, value='pm', label = 'Global F0 method', visible=True, interactive= True)
with gr.Row(variant='compact'):
button_config = gr.Button("APPLY CONFIGURATION")
confirm_conf = gr.HTML()
button_config.click(voices.apply_conf, inputs=[
f0_method_global,
model_voice_path00, name_transpose00, file_index2_00,
model_voice_path01, name_transpose01, file_index2_01,
model_voice_path02, name_transpose02, file_index2_02,
model_voice_path03, name_transpose03, file_index2_03,
model_voice_path04, name_transpose04, file_index2_04,
model_voice_path05, name_transpose05, file_index2_05,
model_voice_path06, name_transpose06, file_index2_06,
], outputs=[confirm_conf])
with gr.Column():
with gr.Accordion("Test RVC", open=False):
with gr.Row(variant='compact'):
text_test = gr.Textbox(label="Text", value="This is an example",info="write a text", placeholder="...", lines=5)
with gr.Column():
tts_test = gr.Dropdown(list_tts, value='en-GB-ThomasNeural-Male', label = 'TTS', visible=True, interactive= True)
model_voice_path07 = gr.Dropdown(models, label = 'Model', visible=True, interactive= True) #value=''
file_index2_07 = gr.Dropdown(index_paths, label = 'Index', visible=True, interactive= True) #value=''
transpose_test = gr.Number(label = 'Transpose', value=0, visible=True, interactive= True, info="integer, number of semitones, raise by an octave: 12, lower by an octave: -12")
f0method_test = gr.Dropdown(f0_methods_voice, value='pm', label = 'F0 method', visible=True, interactive= True)
with gr.Row(variant='compact'):
button_test = gr.Button("Test audio")
with gr.Column():
with gr.Row():
original_ttsvoice = gr.Audio()
ttsvoice = gr.Audio()
button_test.click(voices.make_test, inputs=[
text_test,
tts_test,
model_voice_path07,
file_index2_07,
transpose_test,
f0method_test,
], outputs=[ttsvoice, original_ttsvoice])
download_button.click(download_list, [url_links], [download_finish]).then(update_models, [],
[
model_voice_path00, model_voice_path01, model_voice_path02, model_voice_path03, model_voice_path04, model_voice_path05, model_voice_path06, model_voice_path07,
file_index2_00, file_index2_01, file_index2_02, file_index2_03, file_index2_04, file_index2_05, file_index2_06, file_index2_07
])
with gr.Tab("Help"):
gr.Markdown(tutorial)
gr.Markdown(news)
with gr.Accordion("Logs", open = False):
logs = gr.Textbox()
demo.load(read_logs, None, logs, every=1)
# run
video_button.click(translate_from_video, inputs=[
video_input,
HFKEY,
PREVIEW,
WHISPER_MODEL_SIZE,
batch_size,
compute_type,
SOURCE_LANGUAGE,
TRANSLATE_AUDIO_TO,
min_speakers,
max_speakers,
tts_voice00,
tts_voice01,
tts_voice02,
tts_voice03,
tts_voice04,
tts_voice05,
VIDEO_OUTPUT_NAME,
AUDIO_MIX,
], outputs=video_output)
text_button.click(translate_from_video, inputs=[
blink_input,
bHFKEY,
bPREVIEW,
bWHISPER_MODEL_SIZE,
bbatch_size,
bcompute_type,
bSOURCE_LANGUAGE,
bTRANSLATE_AUDIO_TO,
bmin_speakers,
bmax_speakers,
btts_voice00,
btts_voice01,
btts_voice02,
btts_voice03,
btts_voice04,
btts_voice05,
bVIDEO_OUTPUT_NAME,
bAUDIO_MIX,
], outputs=blink_output)
demo.launch(debug=False, enable_queue=True)
#demo.launch(share=True, enable_queue=True, quiet=True, debug=False)
|