Spaces:
r3gm
/
Running

File size: 3,986 Bytes
7bc29af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
import torch.nn.functional as F
from torch import nn

from . import spec_utils


class Conv2DBNActiv(nn.Module):
    def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
        super(Conv2DBNActiv, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(
                nin,
                nout,
                kernel_size=ksize,
                stride=stride,
                padding=pad,
                dilation=dilation,
                bias=False,
            ),
            nn.BatchNorm2d(nout),
            activ(),
        )

    def __call__(self, x):
        return self.conv(x)


class Encoder(nn.Module):
    def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
        super(Encoder, self).__init__()
        self.conv1 = Conv2DBNActiv(nin, nout, ksize, stride, pad, activ=activ)
        self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)

    def __call__(self, x):
        h = self.conv1(x)
        h = self.conv2(h)

        return h


class Decoder(nn.Module):
    def __init__(
        self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
    ):
        super(Decoder, self).__init__()
        self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
        # self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
        self.dropout = nn.Dropout2d(0.1) if dropout else None

    def __call__(self, x, skip=None):
        x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)

        if skip is not None:
            skip = spec_utils.crop_center(skip, x)
            x = torch.cat([x, skip], dim=1)

        h = self.conv1(x)
        # h = self.conv2(h)

        if self.dropout is not None:
            h = self.dropout(h)

        return h


class ASPPModule(nn.Module):
    def __init__(self, nin, nout, dilations=(4, 8, 12), activ=nn.ReLU, dropout=False):
        super(ASPPModule, self).__init__()
        self.conv1 = nn.Sequential(
            nn.AdaptiveAvgPool2d((1, None)),
            Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ),
        )
        self.conv2 = Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ)
        self.conv3 = Conv2DBNActiv(
            nin, nout, 3, 1, dilations[0], dilations[0], activ=activ
        )
        self.conv4 = Conv2DBNActiv(
            nin, nout, 3, 1, dilations[1], dilations[1], activ=activ
        )
        self.conv5 = Conv2DBNActiv(
            nin, nout, 3, 1, dilations[2], dilations[2], activ=activ
        )
        self.bottleneck = Conv2DBNActiv(nout * 5, nout, 1, 1, 0, activ=activ)
        self.dropout = nn.Dropout2d(0.1) if dropout else None

    def forward(self, x):
        _, _, h, w = x.size()
        feat1 = F.interpolate(
            self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
        )
        feat2 = self.conv2(x)
        feat3 = self.conv3(x)
        feat4 = self.conv4(x)
        feat5 = self.conv5(x)
        out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
        out = self.bottleneck(out)

        if self.dropout is not None:
            out = self.dropout(out)

        return out


class LSTMModule(nn.Module):
    def __init__(self, nin_conv, nin_lstm, nout_lstm):
        super(LSTMModule, self).__init__()
        self.conv = Conv2DBNActiv(nin_conv, 1, 1, 1, 0)
        self.lstm = nn.LSTM(
            input_size=nin_lstm, hidden_size=nout_lstm // 2, bidirectional=True
        )
        self.dense = nn.Sequential(
            nn.Linear(nout_lstm, nin_lstm), nn.BatchNorm1d(nin_lstm), nn.ReLU()
        )

    def forward(self, x):
        N, _, nbins, nframes = x.size()
        h = self.conv(x)[:, 0]  # N, nbins, nframes
        h = h.permute(2, 0, 1)  # nframes, N, nbins
        h, _ = self.lstm(h)
        h = self.dense(h.reshape(-1, h.size()[-1]))  # nframes * N, nbins
        h = h.reshape(nframes, N, 1, nbins)
        h = h.permute(1, 2, 3, 0)

        return h