Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,510 Bytes
1397f77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import os, sys, shutil
import tempfile
import gradio as gr
import pandas as pd
import requests
import wget
from core import run_download_script
from assets.i18n.i18n import I18nAuto
from rvc.lib.utils import format_title
i18n = I18nAuto()
now_dir = os.getcwd()
sys.path.append(now_dir)
gradio_temp_dir = os.path.join(tempfile.gettempdir(), "gradio")
if os.path.exists(gradio_temp_dir):
shutil.rmtree(gradio_temp_dir)
def save_drop_model(dropbox):
if "pth" not in dropbox and "index" not in dropbox:
raise gr.Error(
message="The file you dropped is not a valid model file. Please try again."
)
else:
file_name = format_title(os.path.basename(dropbox))
if ".pth" in dropbox:
model_name = format_title(file_name.split(".pth")[0])
else:
if "v2" not in dropbox:
model_name = format_title(
file_name.split("_nprobe_1_")[1].split("_v1")[0]
)
else:
model_name = format_title(
file_name.split("_nprobe_1_")[1].split("_v2")[0]
)
model_path = os.path.join(now_dir, "logs", model_name)
if not os.path.exists(model_path):
os.makedirs(model_path)
if os.path.exists(os.path.join(model_path, file_name)):
os.remove(os.path.join(model_path, file_name))
shutil.move(dropbox, os.path.join(model_path, file_name))
print(f"{file_name} saved in {model_path}")
gr.Info(f"{file_name} saved in {model_path}")
return None
def search_models(name):
url = f"https://cjtfqzjfdimgpvpwhzlv.supabase.co/rest/v1/models?name=ilike.%25{name}%25&order=created_at.desc&limit=15"
headers = {
"apikey": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6ImNqdGZxempmZGltZ3B2cHdoemx2Iiwicm9sZSI6ImFub24iLCJpYXQiOjE2OTUxNjczODgsImV4cCI6MjAxMDc0MzM4OH0.7z5WMIbjR99c2Ooc0ma7B_FyGq10G8X-alkCYTkKR10"
}
response = requests.get(url, headers=headers)
data = response.json()
if len(data) == 0:
gr.Info(i18n("We couldn't find models by that name."))
return None
else:
df = pd.DataFrame(data)[["name", "link", "epochs", "type"]]
df["link"] = df["link"].apply(
lambda x: f'<a href="{x}" target="_blank">{x}</a>'
)
return df
json_url = "https://huggingface.co/IAHispano/Applio/raw/main/pretrains.json"
def fetch_pretrained_data():
response = requests.get(json_url)
response.raise_for_status()
return response.json()
def get_pretrained_list():
data = fetch_pretrained_data()
return list(data.keys())
def get_pretrained_sample_rates(model):
data = fetch_pretrained_data()
return list(data[model].keys())
def download_pretrained_model(model, sample_rate):
data = fetch_pretrained_data()
paths = data[model][sample_rate]
pretraineds_custom_path = os.path.join("rvc", "pretraineds", "pretraineds_custom")
os.makedirs(pretraineds_custom_path, exist_ok=True)
d_url = f"https://huggingface.co/{paths['D']}"
g_url = f"https://huggingface.co/{paths['G']}"
gr.Info("Downloading Pretrained Model...")
print("Downloading Pretrained Model...")
wget.download(d_url, out=pretraineds_custom_path)
wget.download(g_url, out=pretraineds_custom_path)
def update_sample_rate_dropdown(model):
return {
"choices": get_pretrained_sample_rates(model),
"value": get_pretrained_sample_rates(model)[0],
"__type__": "update",
}
def download_tab():
with gr.Column():
gr.Markdown(value=i18n("## Download Model"))
model_link = gr.Textbox(
label=i18n("Model Link"),
placeholder=i18n("Introduce the model link"),
interactive=True,
)
model_download_output_info = gr.Textbox(
label=i18n("Output Information"),
info=i18n("The output information will be displayed here."),
value="",
max_lines=8,
interactive=False,
)
model_download_button = gr.Button(i18n("Download Model"))
model_download_button.click(
fn=run_download_script,
inputs=[model_link],
outputs=[model_download_output_info],
api_name="model_download",
)
gr.Markdown(value=i18n("## Drop files"))
dropbox = gr.File(
label=i18n(
"Drag your .pth file and .index file into this space. Drag one and then the other."
),
type="filepath",
)
dropbox.upload(
fn=save_drop_model,
inputs=[dropbox],
outputs=[dropbox],
)
gr.Markdown(value=i18n("## Search Model"))
search_name = gr.Textbox(
label=i18n("Model Name"),
placeholder=i18n("Introduce the model name to search."),
interactive=True,
)
search_table = gr.Dataframe(datatype="markdown")
search = gr.Button(i18n("Search"))
search.click(
fn=search_models,
inputs=[search_name],
outputs=[search_table],
)
search_name.submit(search_models, [search_name], search_table)
gr.Markdown(value=i18n("## Download Pretrained Models"))
pretrained_model = gr.Dropdown(
label=i18n("Pretrained"),
info=i18n("Select the pretrained model you want to download."),
choices=get_pretrained_list(),
value="Titan",
interactive=True,
)
pretrained_sample_rate = gr.Dropdown(
label=i18n("Sampling Rate"),
info=i18n("And select the sampling rate."),
choices=get_pretrained_sample_rates(pretrained_model.value),
value="40k",
interactive=True,
allow_custom_value=True,
)
pretrained_model.change(
update_sample_rate_dropdown,
inputs=[pretrained_model],
outputs=[pretrained_sample_rate],
)
download_pretrained = gr.Button(i18n("Download"))
download_pretrained.click(
fn=download_pretrained_model,
inputs=[pretrained_model, pretrained_sample_rate],
outputs=[],
)
|