Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,756 Bytes
c71cd1c 4c2c548 c71cd1c 4c2c548 c71cd1c 4c2c548 c71cd1c 16c7b7d c71cd1c 16c7b7d c71cd1c 16c7b7d c71cd1c 16c7b7d c71cd1c 16c7b7d c71cd1c 16c7b7d c71cd1c 16c7b7d c71cd1c 16c7b7d c71cd1c 16c7b7d c71cd1c 16c7b7d c71cd1c 3463ce4 c71cd1c 3463ce4 c71cd1c 16c7b7d ed6199e c71cd1c 16c7b7d c71cd1c 16c7b7d c71cd1c 16c7b7d c71cd1c 4c2c548 c71cd1c 16c7b7d c71cd1c 4c2c548 c71cd1c 3463ce4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
import os
import re
import gradio as gr
from constants import (
DIFFUSERS_FORMAT_LORAS,
CIVITAI_API_KEY,
HF_TOKEN,
MODEL_TYPE_CLASS,
DIRECTORY_LORAS,
DIFFUSECRAFT_CHECKPOINT_NAME,
)
from huggingface_hub import HfApi
from huggingface_hub import snapshot_download
from diffusers import DiffusionPipeline
from huggingface_hub import model_info as model_info_data
from diffusers.pipelines.pipeline_loading_utils import variant_compatible_siblings
from stablepy.diffusers_vanilla.utils import checkpoint_model_type
from pathlib import PosixPath
from unidecode import unidecode
import urllib.parse
import copy
import requests
from requests.adapters import HTTPAdapter
from urllib3.util import Retry
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0'
def request_json_data(url):
model_version_id = url.split('/')[-1]
if "?modelVersionId=" in model_version_id:
match = re.search(r'modelVersionId=(\d+)', url)
model_version_id = match.group(1)
endpoint_url = f"https://civitai.com/api/v1/model-versions/{model_version_id}"
params = {}
headers = {'User-Agent': USER_AGENT, 'content-type': 'application/json'}
session = requests.Session()
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
session.mount("https://", HTTPAdapter(max_retries=retries))
try:
result = session.get(endpoint_url, params=params, headers=headers, stream=True, timeout=(3.0, 15))
result.raise_for_status()
json_data = result.json()
return json_data if json_data else None
except Exception as e:
print(f"Error: {e}")
return None
class ModelInformation:
def __init__(self, json_data):
self.model_version_id = json_data.get("id", "")
self.model_id = json_data.get("modelId", "")
self.download_url = json_data.get("downloadUrl", "")
self.model_url = f"https://civitai.com/models/{self.model_id}?modelVersionId={self.model_version_id}"
self.filename_url = next(
(v.get("name", "") for v in json_data.get("files", []) if str(self.model_version_id) in v.get("downloadUrl", "")), ""
)
self.filename_url = self.filename_url if self.filename_url else ""
self.description = json_data.get("description", "")
if self.description is None: self.description = ""
self.model_name = json_data.get("model", {}).get("name", "")
self.model_type = json_data.get("model", {}).get("type", "")
self.nsfw = json_data.get("model", {}).get("nsfw", False)
self.poi = json_data.get("model", {}).get("poi", False)
self.images = [img.get("url", "") for img in json_data.get("images", [])]
self.example_prompt = json_data.get("trainedWords", [""])[0] if json_data.get("trainedWords") else ""
self.original_json = copy.deepcopy(json_data)
def retrieve_model_info(url):
json_data = request_json_data(url)
if not json_data:
return None
model_descriptor = ModelInformation(json_data)
return model_descriptor
def download_things(directory, url, hf_token="", civitai_api_key="", romanize=False):
url = url.strip()
downloaded_file_path = None
if "drive.google.com" in url:
original_dir = os.getcwd()
os.chdir(directory)
os.system(f"gdown --fuzzy {url}")
os.chdir(original_dir)
elif "huggingface.co" in url:
url = url.replace("?download=true", "")
# url = urllib.parse.quote(url, safe=':/') # fix encoding
if "/blob/" in url:
url = url.replace("/blob/", "/resolve/")
user_header = f'"Authorization: Bearer {hf_token}"'
filename = unidecode(url.split('/')[-1]) if romanize else url.split('/')[-1]
if hf_token:
os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory} -o {filename}")
else:
os.system(f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {filename}")
downloaded_file_path = os.path.join(directory, filename)
elif "civitai.com" in url:
if not civitai_api_key:
print("\033[91mYou need an API key to download Civitai models.\033[0m")
model_profile = retrieve_model_info(url)
if model_profile.download_url and model_profile.filename_url:
url = model_profile.download_url
filename = unidecode(model_profile.filename_url) if romanize else model_profile.filename_url
else:
if "?" in url:
url = url.split("?")[0]
filename = ""
url_dl = url + f"?token={civitai_api_key}"
print(f"Filename: {filename}")
param_filename = ""
if filename:
param_filename = f"-o '{filename}'"
aria2_command = (
f'aria2c --console-log-level=error --summary-interval=10 -c -x 16 '
f'-k 1M -s 16 -d "{directory}" {param_filename} "{url_dl}"'
)
os.system(aria2_command)
if param_filename and os.path.exists(os.path.join(directory, filename)):
downloaded_file_path = os.path.join(directory, filename)
# # PLAN B
# # Follow the redirect to get the actual download URL
# curl_command = (
# f'curl -L -sI --connect-timeout 5 --max-time 5 '
# f'-H "Content-Type: application/json" '
# f'-H "Authorization: Bearer {civitai_api_key}" "{url}"'
# )
# headers = os.popen(curl_command).read()
# # Look for the redirected "Location" URL
# location_match = re.search(r'location: (.+)', headers, re.IGNORECASE)
# if location_match:
# redirect_url = location_match.group(1).strip()
# # Extract the filename from the redirect URL's "Content-Disposition"
# filename_match = re.search(r'filename%3D%22(.+?)%22', redirect_url)
# if filename_match:
# encoded_filename = filename_match.group(1)
# # Decode the URL-encoded filename
# decoded_filename = urllib.parse.unquote(encoded_filename)
# filename = unidecode(decoded_filename) if romanize else decoded_filename
# print(f"Filename: {filename}")
# aria2_command = (
# f'aria2c --console-log-level=error --summary-interval=10 -c -x 16 '
# f'-k 1M -s 16 -d "{directory}" -o "{filename}" "{redirect_url}"'
# )
# return_code = os.system(aria2_command)
# # if return_code != 0:
# # raise RuntimeError(f"Failed to download file: {filename}. Error code: {return_code}")
# downloaded_file_path = os.path.join(directory, filename)
# if not os.path.exists(downloaded_file_path):
# downloaded_file_path = None
# if not downloaded_file_path:
# # Old method
# if "?" in url:
# url = url.split("?")[0]
# url = url + f"?token={civitai_api_key}"
# os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
else:
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
return downloaded_file_path
def get_model_list(directory_path):
model_list = []
valid_extensions = {'.ckpt', '.pt', '.pth', '.safetensors', '.bin'}
for filename in os.listdir(directory_path):
if os.path.splitext(filename)[1] in valid_extensions:
# name_without_extension = os.path.splitext(filename)[0]
file_path = os.path.join(directory_path, filename)
# model_list.append((name_without_extension, file_path))
model_list.append(file_path)
print('\033[34mFILE: ' + file_path + '\033[0m')
return model_list
def extract_parameters(input_string):
parameters = {}
input_string = input_string.replace("\n", "")
if "Negative prompt:" not in input_string:
if "Steps:" in input_string:
input_string = input_string.replace("Steps:", "Negative prompt: Steps:")
else:
print("Invalid metadata")
parameters["prompt"] = input_string
return parameters
parm = input_string.split("Negative prompt:")
parameters["prompt"] = parm[0].strip()
if "Steps:" not in parm[1]:
print("Steps not detected")
parameters["neg_prompt"] = parm[1].strip()
return parameters
parm = parm[1].split("Steps:")
parameters["neg_prompt"] = parm[0].strip()
input_string = "Steps:" + parm[1]
# Extracting Steps
steps_match = re.search(r'Steps: (\d+)', input_string)
if steps_match:
parameters['Steps'] = int(steps_match.group(1))
# Extracting Size
size_match = re.search(r'Size: (\d+x\d+)', input_string)
if size_match:
parameters['Size'] = size_match.group(1)
width, height = map(int, parameters['Size'].split('x'))
parameters['width'] = width
parameters['height'] = height
# Extracting other parameters
other_parameters = re.findall(r'([^,:]+): (.*?)(?=, [^,:]+:|$)', input_string)
for param in other_parameters:
parameters[param[0].strip()] = param[1].strip('"')
return parameters
def get_my_lora(link_url, romanize):
l_name = ""
for url in [url.strip() for url in link_url.split(',')]:
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
l_name = download_things(DIRECTORY_LORAS, url, HF_TOKEN, CIVITAI_API_KEY, romanize)
new_lora_model_list = get_model_list(DIRECTORY_LORAS)
new_lora_model_list.insert(0, "None")
new_lora_model_list = new_lora_model_list + DIFFUSERS_FORMAT_LORAS
msg_lora = "Downloaded"
if l_name:
msg_lora += f": <b>{l_name}</b>"
print(msg_lora)
return gr.update(
choices=new_lora_model_list
), gr.update(
choices=new_lora_model_list
), gr.update(
choices=new_lora_model_list
), gr.update(
choices=new_lora_model_list
), gr.update(
choices=new_lora_model_list
), gr.update(
value=msg_lora
)
def info_html(json_data, title, subtitle):
return f"""
<div style='padding: 0; border-radius: 10px;'>
<p style='margin: 0; font-weight: bold;'>{title}</p>
<details>
<summary>Details</summary>
<p style='margin: 0; font-weight: bold;'>{subtitle}</p>
</details>
</div>
"""
def get_model_type(repo_id: str):
api = HfApi(token=os.environ.get("HF_TOKEN")) # if use private or gated model
default = "SD 1.5"
try:
if os.path.exists(repo_id):
tag = checkpoint_model_type(repo_id)
return DIFFUSECRAFT_CHECKPOINT_NAME[tag]
else:
model = api.model_info(repo_id=repo_id, timeout=5.0)
tags = model.tags
for tag in tags:
if tag in MODEL_TYPE_CLASS.keys(): return MODEL_TYPE_CLASS.get(tag, default)
except Exception:
return default
return default
def restart_space(repo_id: str, factory_reboot: bool):
api = HfApi(token=os.environ.get("HF_TOKEN"))
try:
runtime = api.get_space_runtime(repo_id=repo_id)
if runtime.stage == "RUNNING":
api.restart_space(repo_id=repo_id, factory_reboot=factory_reboot)
print(f"Restarting space: {repo_id}")
else:
print(f"Space {repo_id} is in stage: {runtime.stage}")
except Exception as e:
print(e)
def extract_exif_data(image):
if image is None: return ""
try:
metadata_keys = ['parameters', 'metadata', 'prompt', 'Comment']
for key in metadata_keys:
if key in image.info:
return image.info[key]
return str(image.info)
except Exception as e:
return f"Error extracting metadata: {str(e)}"
def create_mask_now(img, invert):
import numpy as np
import time
time.sleep(0.5)
transparent_image = img["layers"][0]
# Extract the alpha channel
alpha_channel = np.array(transparent_image)[:, :, 3]
# Create a binary mask by thresholding the alpha channel
binary_mask = alpha_channel > 1
if invert:
print("Invert")
# Invert the binary mask so that the drawn shape is white and the rest is black
binary_mask = np.invert(binary_mask)
# Convert the binary mask to a 3-channel RGB mask
rgb_mask = np.stack((binary_mask,) * 3, axis=-1)
# Convert the mask to uint8
rgb_mask = rgb_mask.astype(np.uint8) * 255
return img["background"], rgb_mask
def download_diffuser_repo(repo_name: str, model_type: str, revision: str = "main", token=True):
variant = None
if token is True and not os.environ.get("HF_TOKEN"):
token = None
if model_type == "SDXL":
info = model_info_data(
repo_name,
token=token,
revision=revision,
timeout=5.0,
)
filenames = {sibling.rfilename for sibling in info.siblings}
model_filenames, variant_filenames = variant_compatible_siblings(
filenames, variant="fp16"
)
if len(variant_filenames):
variant = "fp16"
if model_type == "FLUX":
cached_folder = snapshot_download(
repo_id=repo_name,
allow_patterns="transformer/*"
)
else:
cached_folder = DiffusionPipeline.download(
pretrained_model_name=repo_name,
force_download=False,
token=token,
revision=revision,
# mirror="https://hf-mirror.com",
variant=variant,
use_safetensors=True,
trust_remote_code=False,
timeout=5.0,
)
if isinstance(cached_folder, PosixPath):
cached_folder = cached_folder.as_posix()
# Task model
# from huggingface_hub import hf_hub_download
# hf_hub_download(
# task_model,
# filename="diffusion_pytorch_model.safetensors", # fix fp16 variant
# )
return cached_folder
def progress_step_bar(step, total):
# Calculate the percentage for the progress bar width
percentage = min(100, ((step / total) * 100))
return f"""
<div style="position: relative; width: 100%; background-color: gray; border-radius: 5px; overflow: hidden;">
<div style="width: {percentage}%; height: 17px; background-color: #800080; transition: width 0.5s;"></div>
<div style="position: absolute; width: 100%; text-align: center; color: white; top: 0; line-height: 19px; font-size: 13px;">
{int(percentage)}%
</div>
</div>
"""
def html_template_message(msg):
return f"""
<div style="position: relative; width: 100%; background-color: gray; border-radius: 5px; overflow: hidden;">
<div style="width: 0%; height: 17px; background-color: #800080; transition: width 0.5s;"></div>
<div style="position: absolute; width: 100%; text-align: center; color: white; top: 0; line-height: 19px; font-size: 14px; font-weight: bold; text-shadow: 1px 1px 2px black;">
{msg}
</div>
</div>
"""
def escape_html(text):
"""Escapes HTML special characters in the input text."""
return text.replace("<", "<").replace(">", ">").replace("\n", "<br>")
|