File size: 6,561 Bytes
a9c396e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
057f5e7
a9c396e
 
 
057f5e7
0ce15d3
057f5e7
 
a9c396e
 
 
057f5e7
 
 
 
 
 
 
 
 
 
 
 
 
 
a9c396e
 
 
 
 
 
 
 
 
057f5e7
a9c396e
057f5e7
 
a9c396e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
057f5e7
 
 
 
a263964
 
 
a9c396e
33e49c0
 
 
 
 
a9c396e
 
 
057f5e7
a9c396e
057f5e7
a9c396e
057f5e7
 
a9c396e
057f5e7
 
 
 
a9c396e
 
057f5e7
a9c396e
 
 
057f5e7
 
a9c396e
 
 
 
a263964
a9c396e
 
 
 
ae5dbd6
057f5e7
 
ae5dbd6
a9c396e
057f5e7
 
 
 
 
 
 
 
 
 
 
a9c396e
 
61c3f19
a263964
057f5e7
a263964
4be7861
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import gradio as gr
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain.vectorstores import DocArrayInMemorySearch
from langchain.chains import RetrievalQA,  ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import HuggingFaceEmbeddings
from langchain import HuggingFaceHub
from langchain.llms import LlamaCpp
from huggingface_hub import hf_hub_download
from langchain.document_loaders import (
    EverNoteLoader,
    TextLoader,
    UnstructuredEPubLoader,
    UnstructuredHTMLLoader,
    UnstructuredMarkdownLoader,
    UnstructuredODTLoader,
    UnstructuredPowerPointLoader,
    UnstructuredWordDocumentLoader,
    PyPDFLoader,
)
import param
import os
import torch
from conversadocs.bones import DocChat

dc = DocChat()

##### GRADIO CONFIG ####

if torch.cuda.is_available():
    print("CUDA is available on this system.")
    os.system('CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python --force-reinstall --upgrade --no-cache-dir --verbose')
else:
    print("CUDA is not available on this system.")
    os.system('pip install llama-cpp-python')

css="""
#col-container {max-width: 1500px; margin-left: auto; margin-right: auto;}
"""

title = """
<div style="text-align: center;max-width: 1500px;">
    <h2>Chat with Documents 📚 - Falcon and Llama-2</h2>
    <p style="text-align: center;">Upload txt, pdf, doc, docx, enex, epub, html, md, odt, ptt and pttx. 
    Wait for the Status to show Loaded documents, start typing your questions. This is a demo of <a href="https://github.com/R3gm/ConversaDocs">ConversaDocs</a>.<br /></p>
</div>
"""

description = """
# Application Information

- Notebook for run ConversaDocs in Colab [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/R3gm/ConversaDocs/blob/main/ConversaDocs_Colab.ipynb)

- Oficial Repository [![a](https://img.shields.io/badge/GitHub-Repository-black?style=flat-square&logo=github)](https://github.com/R3gm/ConversaDocs/)

- This application works on both CPU and GPU. For fast inference with GGML models, use the GPU.

- You can clone the 'space' but to make it work, you need to set My_hf_token in secrets with a valid huggingface [token](https://huggingface.co/settings/tokens) 

- For more information about what GGML models are, you can visit this notebook [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/R3gm/InsightSolver-Colab/blob/main/LLM_Inference_with_llama_cpp_python__Llama_2_13b_chat.ipynb)
"""

theme='aliabid94/new-theme'

def flag():
  return "PROCESSING..."

def upload_file(files, max_docs):
    file_paths = [file.name for file in files]
    return dc.call_load_db(file_paths, max_docs)

def predict(message, chat_history, max_k, check_memory):
        print(message)
        print(check_memory)
        bot_message = dc.convchain(message, max_k, check_memory)
        print(bot_message)
        return "", dc.get_chats()

def convert():
  docs = dc.get_sources()
  data_docs = ""
  for i in range(0,len(docs),2):
    txt = docs[i][1].replace("\n","<br>")
    sc = "Archive: " + docs[i+1][1]["source"]
    try:
      pg = "Page: " + str(docs[i+1][1]["page"])
    except:
      pg = "Document Data"
    data_docs += f"<hr><h3 style='color:red;'>{pg}</h2><p>{txt}</p><p>{sc}</p>"
  return data_docs

def clear_api_key(api_key):
  return 'api_key...', dc.openai_model(api_key)


# Max values in generation
DOC_DB_LIMIT = 10
MAX_NEW_TOKENS = 2048

# Limit in HF, no need to set it
if "SET_LIMIT" == os.getenv("DEMO"):
    DOC_DB_LIMIT = 4
    MAX_NEW_TOKENS = 32

with gr.Blocks(theme=theme, css=css) as demo:
  with gr.Tab("Chat"):

    with gr.Column():
        gr.HTML(title)
        upload_button = gr.UploadButton("Click to Upload Files", file_count="multiple")
        file_output = gr.HTML()

        chatbot = gr.Chatbot([], elem_id="chatbot") #.style(height=300)
        msg = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
        with gr.Row():
            check_memory = gr.inputs.Checkbox(label="Remember previous messages")
            clear_button = gr.Button("CLEAR CHAT HISTORY", )
            max_docs = gr.inputs.Slider(1, DOC_DB_LIMIT, default=3, label="Maximum querys to the DB.", step=1)

    with gr.Column():
        link_output = gr.HTML("")
        sou = gr.HTML("")

    clear_button.click(flag,[],[link_output]).then(dc.clr_history,[], [link_output]).then(lambda: None, None, chatbot, queue=False)
    upload_button.upload(flag,[],[file_output]).then(upload_file, [upload_button, max_docs], file_output).then(dc.clr_history,[], [link_output]).then(lambda: None, None, chatbot, queue=False)
    
  with gr.Tab("Change model"):
    gr.HTML("<h3>Only models from the GGML library are accepted.</h3>")
    repo_ = gr.Textbox(label="Repository" ,value="TheBloke/Llama-2-7B-Chat-GGML")
    file_ = gr.Textbox(label="File name" ,value="llama-2-7b-chat.ggmlv3.q2_K.bin")
    max_tokens = gr.inputs.Slider(1, MAX_NEW_TOKENS, default=16, label="Max new tokens", step=1)
    temperature = gr.inputs.Slider(0.1, 1., default=0.2, label="Temperature", step=0.1)
    top_k = gr.inputs.Slider(0.01, 1., default=0.95, label="Top K", step=0.01)
    top_p = gr.inputs.Slider(0, 100, default=50, label="Top P", step=1)
    repeat_penalty = gr.inputs.Slider(0.1, 100., default=1.2, label="Repeat penalty", step=0.1)
    change_model_button = gr.Button("Load GGML Model")
    
    default_model = gr.HTML("<hr>Default Model</h2>")
    falcon_button = gr.Button("Load FALCON 7B-Instruct")

    openai_gpt_model = gr.HTML("<hr>OpenAI Model gpt-3.5-turbo</h2>")
    api_key = gr.Textbox(label="API KEY", value="api_key...")
    openai_button = gr.Button("Load gpt-3.5-turbo")

    line_ = gr.HTML("<hr> </h2>")
    model_verify = gr.HTML("Loaded model Falcon 7B-instruct")

  with gr.Tab("About"):
    description_md = gr.Markdown(description)

  msg.submit(predict,[msg, chatbot, max_docs, check_memory],[msg, chatbot]).then(convert,[],[sou])

  change_model_button.click(dc.change_llm,[repo_, file_, max_tokens, temperature, top_p, top_k, repeat_penalty, max_docs],[model_verify])

  falcon_button.click(dc.default_falcon_model, [], [model_verify])
  openai_button.click(clear_api_key, [api_key], [api_key, model_verify])
    
demo.launch(enable_queue=True)