File size: 13,942 Bytes
a956529 19a8f04 08a99f7 86e39a8 08a99f7 19a8f04 210468c 19a8f04 210468c 19a8f04 372afc3 19a8f04 210468c 19a8f04 141e3fd 887727d 18dbf2d 372afc3 18dbf2d dffc7d4 86e39a8 18dbf2d d1074fe 18dbf2d 27e967e 86e39a8 18dbf2d d83b987 18dbf2d 372afc3 18dbf2d 27e967e 86e39a8 e7373fa 210468c e7373fa 210468c 86e39a8 18dbf2d d82c773 18dbf2d 210468c 86e39a8 18dbf2d 86e39a8 141e3fd 86e39a8 141e3fd 86e39a8 18dbf2d 372afc3 86e39a8 141e3fd 86e39a8 141e3fd e2f2ce0 1fcd413 86e39a8 141e3fd 18dbf2d 27e967e 74242f2 18dbf2d 86e39a8 141e3fd 18dbf2d 141e3fd 18dbf2d 86e39a8 18dbf2d 86e39a8 27e967e 18dbf2d 27e967e 86e39a8 b89ec7e 27e967e 18dbf2d 86e39a8 e2f2ce0 86e39a8 18dbf2d 86e39a8 18dbf2d 86e39a8 18dbf2d 86e39a8 18dbf2d 8dc5ffd 18dbf2d 86e39a8 18dbf2d 86e39a8 18dbf2d 74242f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import argparse
import json
import os
import re
import tempfile
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
import librosa
import numpy as np
import torch
from torch import no_grad, LongTensor
import commons
import utils
import gradio as gr
import gradio.utils as gr_utils
import gradio.processing_utils as gr_processing_utils
import ONNXVITS_infer
import models
from text import text_to_sequence, _clean_text
from text.symbols import symbols
from mel_processing import spectrogram_torch
import psutil
from datetime import datetime
language_marks = {
"Japanese": "",
"日本語": "[JA]",
"简体中文": "[ZH]",
"English": "[EN]",
"Mix": "",
}
limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
def create_tts_fn(model, hps, speaker_ids):
def tts_fn(text, speaker, language, speed, is_symbol):
if limitation:
text_len = len(re.sub("\[([A-Z]{2})\]", "", text))
max_len = 150
if is_symbol:
max_len *= 3
if text_len > max_len:
return "Error: Text is too long", None
if language is not None:
text = language_marks[language] + text + language_marks[language]
speaker_id = speaker_ids[speaker]
stn_tst = get_text(text, hps, is_symbol)
with no_grad():
x_tst = stn_tst.unsqueeze(0)
x_tst_lengths = LongTensor([stn_tst.size(0)])
sid = LongTensor([speaker_id])
audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8,
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
del stn_tst, x_tst, x_tst_lengths, sid
return "Success", (hps.data.sampling_rate, audio)
return tts_fn
def create_vc_fn(model, hps, speaker_ids):
def vc_fn(original_speaker, target_speaker, input_audio):
if input_audio is None:
return "You need to upload an audio", None
sampling_rate, audio = input_audio
duration = audio.shape[0] / sampling_rate
if limitation and duration > 30:
return "Error: Audio is too long", None
original_speaker_id = speaker_ids[original_speaker]
target_speaker_id = speaker_ids[target_speaker]
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
if sampling_rate != hps.data.sampling_rate:
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate)
with no_grad():
y = torch.FloatTensor(audio)
y = y.unsqueeze(0)
spec = spectrogram_torch(y, hps.data.filter_length,
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
center=False)
spec_lengths = LongTensor([spec.size(-1)])
sid_src = LongTensor([original_speaker_id])
sid_tgt = LongTensor([target_speaker_id])
audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
0, 0].data.cpu().float().numpy()
del y, spec, spec_lengths, sid_src, sid_tgt
return "Success", (hps.data.sampling_rate, audio)
return vc_fn
def get_text(text, hps, is_symbol):
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = LongTensor(text_norm)
return text_norm
def create_to_symbol_fn(hps):
def to_symbol_fn(is_symbol_input, input_text, temp_text):
return (_clean_text(input_text, hps.data.text_cleaners), input_text) if is_symbol_input \
else (temp_text, temp_text)
return to_symbol_fn
models_tts = []
models_vc = []
models_info = [
{
"title": "Trilingual",
"languages": ['日本語', '简体中文', 'English', 'Mix'],
"description": """
This model is trained on a mix up of Umamusume, Genshin Impact, Sanoba Witch & VCTK voice data to learn multilanguage.
All characters can speak English, Chinese & Japanese.\n\n
To mix multiple languages in a single sentence, wrap the corresponding part with language tokens
([JA] for Japanese, [ZH] for Chinese, [EN] for English), as shown in the examples.\n\n
这个模型在赛马娘,原神,魔女的夜宴以及VCTK数据集上混合训练以学习多种语言。
所有角色均可说中日英三语。\n\n
若需要在同一个句子中混合多种语言,使用相应的语言标记包裹句子。
(日语用[JA], 中文用[ZH], 英文用[EN]),参考Examples中的示例。
""",
"model_path": "./pretrained_models/G_trilingual.pth",
"config_path": "./configs/uma_trilingual.json",
"examples": [['你好,训练员先生,很高兴见到你。', '草上飞 Grass Wonder (Umamusume Pretty Derby)', '简体中文', 1, False],
['To be honest, I have no idea what to say as examples.', '派蒙 Paimon (Genshin Impact)', 'English',
1, False],
['授業中に出しだら,学校生活終わるですわ。', '綾地 寧々 Ayachi Nene (Sanoba Witch)', '日本語', 1, False],
['[JA]こんにちわ。[JA][ZH]你好![ZH][EN]Hello![EN]', '綾地 寧々 Ayachi Nene (Sanoba Witch)', 'Mix', 1, False]],
"onnx_dir": "./ONNX_net/G_trilingual/"
},
{
"title": "Japanese",
"languages": ["Japanese"],
"description": """
This model contains 87 characters from Umamusume: Pretty Derby, Japanese only.\n\n
这个模型包含赛马娘的所有87名角色,只能合成日语。
""",
"model_path": "./pretrained_models/G_jp.pth",
"config_path": "./configs/uma87.json",
"examples": [['お疲れ様です,トレーナーさん。', '无声铃鹿 Silence Suzuka (Umamusume Pretty Derby)', 'Japanese', 1, False],
['張り切っていこう!', '北部玄驹 Kitasan Black (Umamusume Pretty Derby)', 'Japanese', 1, False],
['何でこんなに慣れでんのよ,私のほが先に好きだっだのに。', '草上飞 Grass Wonder (Umamusume Pretty Derby)', 'Japanese', 1, False],
['授業中に出しだら,学校生活終わるですわ。', '目白麦昆 Mejiro Mcqueen (Umamusume Pretty Derby)', 'Japanese', 1, False],
['お帰りなさい,お兄様!', '米浴 Rice Shower (Umamusume Pretty Derby)', 'Japanese', 1, False],
['私の処女をもらっでください!', '米浴 Rice Shower (Umamusume Pretty Derby)', 'Japanese', 1, False]],
"onnx_dir": "./ONNX_net/G_jp/"
},
]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
args = parser.parse_args()
for info in models_info:
name = info['title']
lang = info['languages']
examples = info['examples']
config_path = info['config_path']
model_path = info['model_path']
description = info['description']
onnx_dir = info["onnx_dir"]
hps = utils.get_hparams_from_file(config_path)
model = ONNXVITS_infer.SynthesizerTrn(
len(hps.symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
ONNX_dir=onnx_dir,
**hps.model)
utils.load_checkpoint(model_path, model, None)
model.eval()
speaker_ids = hps.speakers
speakers = list(hps.speakers.keys())
models_tts.append((name, description, speakers, lang, examples,
hps.symbols, create_tts_fn(model, hps, speaker_ids),
create_to_symbol_fn(hps)))
models_vc.append((name, description, speakers, create_vc_fn(model, hps, speaker_ids)))
app = gr.Blocks()
with app:
gr.Markdown("# English & Chinese & Japanese Anime TTS\n\n"
"![visitor badge](https://visitor-badge.glitch.me/badge?page_id=Plachta.VITS-Umamusume-voice-synthesizer)\n\n"
"Including Japanese TTS & Trilingual TTS, speakers are all anime characters. \n\n包含一个纯日语TTS和一个中日英三语TTS模型,主要为二次元角色。\n\n"
"If you have any suggestions or bug reports, feel free to open discussion in [Community](https://huggingface.co/spaces/Plachta/VITS-Umamusume-voice-synthesizer/discussions).\n\n"
"若有bug反馈或建议,请在[Community](https://huggingface.co/spaces/Plachta/VITS-Umamusume-voice-synthesizer/discussions)下开启一个新的Discussion。 \n\n"
)
with gr.Tabs():
with gr.TabItem("TTS"):
with gr.Tabs():
for i, (name, description, speakers, lang, example, symbols, tts_fn, to_symbol_fn) in enumerate(
models_tts):
with gr.TabItem(name):
gr.Markdown(description)
with gr.Row():
with gr.Column():
textbox = gr.TextArea(label="Text",
placeholder="Type your sentence here (Maximum 150 words)",
value="こんにちわ。", elem_id=f"tts-input")
with gr.Accordion(label="Phoneme Input", open=False):
temp_text_var = gr.Variable()
symbol_input = gr.Checkbox(value=False, label="Symbol input")
symbol_list = gr.Dataset(label="Symbol list", components=[textbox],
samples=[[x] for x in symbols],
elem_id=f"symbol-list")
symbol_list_json = gr.Json(value=symbols, visible=False)
symbol_input.change(to_symbol_fn,
[symbol_input, textbox, temp_text_var],
[textbox, temp_text_var])
symbol_list.click(None, [symbol_list, symbol_list_json], textbox,
_js=f"""
(i, symbols, text) => {{
let root = document.querySelector("body > gradio-app");
if (root.shadowRoot != null)
root = root.shadowRoot;
let text_input = root.querySelector("#tts-input").querySelector("textarea");
let startPos = text_input.selectionStart;
let endPos = text_input.selectionEnd;
let oldTxt = text_input.value;
let result = oldTxt.substring(0, startPos) + symbols[i] + oldTxt.substring(endPos);
text_input.value = result;
let x = window.scrollX, y = window.scrollY;
text_input.focus();
text_input.selectionStart = startPos + symbols[i].length;
text_input.selectionEnd = startPos + symbols[i].length;
text_input.blur();
window.scrollTo(x, y);
text = text_input.value;
return text;
}}""")
# select character
char_dropdown = gr.Dropdown(choices=speakers, value=speakers[0], label='character')
language_dropdown = gr.Dropdown(choices=lang, value=lang[0], label='language')
duration_slider = gr.Slider(minimum=0.1, maximum=5, value=1, step=0.1,
label='速度 Speed')
with gr.Column():
text_output = gr.Textbox(label="Message")
audio_output = gr.Audio(label="Output Audio", elem_id="tts-audio")
btn = gr.Button("Generate!")
btn.click(tts_fn,
inputs=[textbox, char_dropdown, language_dropdown, duration_slider,
symbol_input],
outputs=[text_output, audio_output])
gr.Examples(
examples=example,
inputs=[textbox, char_dropdown, language_dropdown,
duration_slider, symbol_input],
outputs=[text_output, audio_output],
fn=tts_fn
)
app.queue(concurrency_count=3).launch(show_api=False, share=args.share) |