File size: 16,047 Bytes
3b7b011 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
import sys
sys.path.append("..")
import os
now_dir = os.getcwd()
from dotenv import load_dotenv
from lib.infer.modules.vc.modules import VC
from assets.configs.config import Config
load_dotenv()
config = Config()
vc = VC(config)
import shutil
import numpy as np
import torch
import soundfile as sf
from gtts import gTTS
import edge_tts
import asyncio
import scipy.io.wavfile as wavfile
import nltk
nltk.download("punkt", quiet=True)
from nltk.tokenize import sent_tokenize
from bark import SAMPLE_RATE
import json
import ssl
from typing import Any, Dict, List, Optional
import asyncio
import aiohttp
import certifi
VOICE_LIST = (
"https://speech.platform.bing.com/consumer/speech/synthesize/"
+ "readaloud/voices/list?trustedclienttoken="
+ "6A5AA1D4EAFF4E9FB37E23D68491D6F4"
)
def get_bark_voice():
mensaje = """
v2/en_speaker_0 English Male
v2/en_speaker_1 English Male
v2/en_speaker_2 English Male
v2/en_speaker_3 English Male
v2/en_speaker_4 English Male
v2/en_speaker_5 English Male
v2/en_speaker_6 English Male
v2/en_speaker_7 English Male
v2/en_speaker_8 English Male
v2/en_speaker_9 English Female
v2/zh_speaker_0 Chinese (Simplified) Male
v2/zh_speaker_1 Chinese (Simplified) Male
v2/zh_speaker_2 Chinese (Simplified) Male
v2/zh_speaker_3 Chinese (Simplified) Male
v2/zh_speaker_4 Chinese (Simplified) Female
v2/zh_speaker_5 Chinese (Simplified) Male
v2/zh_speaker_6 Chinese (Simplified) Female
v2/zh_speaker_7 Chinese (Simplified) Female
v2/zh_speaker_8 Chinese (Simplified) Male
v2/zh_speaker_9 Chinese (Simplified) Female
v2/fr_speaker_0 French Male
v2/fr_speaker_1 French Female
v2/fr_speaker_2 French Female
v2/fr_speaker_3 French Male
v2/fr_speaker_4 French Male
v2/fr_speaker_5 French Female
v2/fr_speaker_6 French Male
v2/fr_speaker_7 French Male
v2/fr_speaker_8 French Male
v2/fr_speaker_9 French Male
v2/de_speaker_0 German Male
v2/de_speaker_1 German Male
v2/de_speaker_2 German Male
v2/de_speaker_3 German Female
v2/de_speaker_4 German Male
v2/de_speaker_5 German Male
v2/de_speaker_6 German Male
v2/de_speaker_7 German Male
v2/de_speaker_8 German Female
v2/de_speaker_9 German Male
v2/hi_speaker_0 Hindi Female
v2/hi_speaker_1 Hindi Female
v2/hi_speaker_2 Hindi Male
v2/hi_speaker_3 Hindi Female
v2/hi_speaker_4 Hindi Female
v2/hi_speaker_5 Hindi Male
v2/hi_speaker_6 Hindi Male
v2/hi_speaker_7 Hindi Male
v2/hi_speaker_8 Hindi Male
v2/hi_speaker_9 Hindi Female
v2/it_speaker_0 Italian Male
v2/it_speaker_1 Italian Male
v2/it_speaker_2 Italian Female
v2/it_speaker_3 Italian Male
v2/it_speaker_4 Italian Male
v2/it_speaker_5 Italian Male
v2/it_speaker_6 Italian Male
v2/it_speaker_7 Italian Female
v2/it_speaker_8 Italian Male
v2/it_speaker_9 Italian Female
v2/ja_speaker_0 Japanese Female
v2/ja_speaker_1 Japanese Female
v2/ja_speaker_2 Japanese Male
v2/ja_speaker_3 Japanese Female
v2/ja_speaker_4 Japanese Female
v2/ja_speaker_5 Japanese Female
v2/ja_speaker_6 Japanese Male
v2/ja_speaker_7 Japanese Female
v2/ja_speaker_8 Japanese Female
v2/ja_speaker_9 Japanese Female
v2/ko_speaker_0 Korean Female
v2/ko_speaker_1 Korean Male
v2/ko_speaker_2 Korean Male
v2/ko_speaker_3 Korean Male
v2/ko_speaker_4 Korean Male
v2/ko_speaker_5 Korean Male
v2/ko_speaker_6 Korean Male
v2/ko_speaker_7 Korean Male
v2/ko_speaker_8 Korean Male
v2/ko_speaker_9 Korean Male
v2/pl_speaker_0 Polish Male
v2/pl_speaker_1 Polish Male
v2/pl_speaker_2 Polish Male
v2/pl_speaker_3 Polish Male
v2/pl_speaker_4 Polish Female
v2/pl_speaker_5 Polish Male
v2/pl_speaker_6 Polish Female
v2/pl_speaker_7 Polish Male
v2/pl_speaker_8 Polish Male
v2/pl_speaker_9 Polish Female
v2/pt_speaker_0 Portuguese Male
v2/pt_speaker_1 Portuguese Male
v2/pt_speaker_2 Portuguese Male
v2/pt_speaker_3 Portuguese Male
v2/pt_speaker_4 Portuguese Male
v2/pt_speaker_5 Portuguese Male
v2/pt_speaker_6 Portuguese Male
v2/pt_speaker_7 Portuguese Male
v2/pt_speaker_8 Portuguese Male
v2/pt_speaker_9 Portuguese Male
v2/ru_speaker_0 Russian Male
v2/ru_speaker_1 Russian Male
v2/ru_speaker_2 Russian Male
v2/ru_speaker_3 Russian Male
v2/ru_speaker_4 Russian Male
v2/ru_speaker_5 Russian Female
v2/ru_speaker_6 Russian Female
v2/ru_speaker_7 Russian Male
v2/ru_speaker_8 Russian Male
v2/ru_speaker_9 Russian Female
v2/es_speaker_0 Spanish Male
v2/es_speaker_1 Spanish Male
v2/es_speaker_2 Spanish Male
v2/es_speaker_3 Spanish Male
v2/es_speaker_4 Spanish Male
v2/es_speaker_5 Spanish Male
v2/es_speaker_6 Spanish Male
v2/es_speaker_7 Spanish Male
v2/es_speaker_8 Spanish Female
v2/es_speaker_9 Spanish Female
v2/tr_speaker_0 Turkish Male
v2/tr_speaker_1 Turkish Male
v2/tr_speaker_2 Turkish Male
v2/tr_speaker_3 Turkish Male
v2/tr_speaker_4 Turkish Female
v2/tr_speaker_5 Turkish Female
v2/tr_speaker_6 Turkish Male
v2/tr_speaker_7 Turkish Male
v2/tr_speaker_8 Turkish Male
v2/tr_speaker_9 Turkish Male
"""
# Dividir el mensaje en líneas
lineas = mensaje.split("\n")
datos_deseados = []
for linea in lineas:
partes = linea.split("\t")
if len(partes) == 3:
clave, _, genero = partes
datos_deseados.append(f"{clave}-{genero}")
return datos_deseados
# ||-----------------------------------------------------------------------------------||
# || Obtained from dependency edge_tts ||
# ||-----------------------------------------------------------------------------------||
async def list_voices(*, proxy: Optional[str] = None) -> Any:
"""
List all available voices and their attributes.
This pulls data from the URL used by Microsoft Edge to return a list of
all available voices.
Returns:
dict: A dictionary of voice attributes.
"""
ssl_ctx = ssl.create_default_context(cafile=certifi.where())
async with aiohttp.ClientSession(trust_env=True) as session:
async with session.get(
VOICE_LIST,
headers={
"Authority": "speech.platform.bing.com",
"Sec-CH-UA": '" Not;A Brand";v="99", "Microsoft Edge";v="91", "Chromium";v="91"',
"Sec-CH-UA-Mobile": "?0",
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 "
"(KHTML, like Gecko) Chrome/91.0.4472.77 Safari/537.36 Edg/91.0.864.41",
"Accept": "*/*",
"Sec-Fetch-Site": "none",
"Sec-Fetch-Mode": "cors",
"Sec-Fetch-Dest": "empty",
"Accept-Encoding": "gzip, deflate, br",
"Accept-Language": "en-US,en;q=0.9",
},
proxy=proxy,
ssl=ssl_ctx,
) as url:
data = json.loads(await url.text())
return data
async def create(custom_voices: Optional[List[Dict[str, Any]]] = None) -> List[Dict[str, Any]]:
"""
Creates a list of voices with all available voices and their attributes.
"""
voices = await list_voices() if custom_voices is None else custom_voices
voices = [
{**voice, **{"Language": voice["Locale"].split("-")[0]}}
for voice in voices
]
simplified_voices = [
{'ShortName': voice['ShortName'], 'Gender': voice['Gender']}
for voice in voices
]
return simplified_voices
async def loop_main():
voices = await create()
voices_json = json.dumps(voices)
return voices_json
def get_edge_voice():
loop = asyncio.get_event_loop()
voices_json = loop.run_until_complete(loop_main())
voices = json.loads(voices_json)
tts_voice = []
for voice in voices:
short_name = voice['ShortName']
gender = voice['Gender']
formatted_entry = f"{short_name}-{gender}"
tts_voice.append(formatted_entry)
# print(f"{short_name}-{gender}")
return tts_voice
set_bark_voice = get_bark_voice()
set_edge_voice = get_edge_voice()
def update_tts_methods_voice(select_value):
# ["Edge-tts", "RVG-tts", "Bark-tts"]
if select_value == "Edge-tts":
return {"choices": set_edge_voice, "value": "", "__type__": "update"}
elif select_value == "Bark-tts":
return {"choices": set_bark_voice, "value": "", "__type__": "update"}
def custom_voice(
_values, # filter indices
audio_files, # all audio files
model_voice_path="",
transpose=0,
f0method="pm",
index_rate_=float(0.66),
crepe_hop_length_=float(64),
f0_autotune=False,
file_index="",
file_index2="",
):
vc.get_vc(model_voice_path)
for _value_item in _values:
filename = (
"assets/audios/audio_outputs" + audio_files[_value_item]
if _value_item != "converted_tts"
else audio_files[0]
)
# filename = "audio2/"+audio_files[_value_item]
try:
print(audio_files[_value_item], model_voice_path)
except:
pass
info_, (sample_, audio_output_) = vc.vc_single_dont_save(
sid=0,
input_audio_path1=filename, # f"audio2/{filename}",
f0_up_key=transpose, # transpose for m to f and reverse 0 12
f0_file=None,
f0_method=f0method,
file_index=file_index, # dir pwd?
file_index2=file_index2,
# file_big_npy1,
index_rate=index_rate_,
filter_radius=int(3),
resample_sr=int(0),
rms_mix_rate=float(0.25),
protect=float(0.33),
crepe_hop_length=crepe_hop_length_,
f0_autotune=f0_autotune,
f0_min=50,
note_min=50,
f0_max=1100,
note_max=1100,
)
sf.write(
file=filename, # f"audio2/{filename}",
samplerate=sample_,
data=audio_output_,
)
def cast_to_device(tensor, device):
try:
return tensor.to(device)
except Exception as e:
print(e)
return tensor
def __bark__(text, voice_preset):
os.makedirs(os.path.join(now_dir, "tts"), exist_ok=True)
from transformers import AutoProcessor, BarkModel
device = "cuda:0" if torch.cuda.is_available() else "cpu"
dtype = torch.float32 if "cpu" in device else torch.float16
bark_processor = AutoProcessor.from_pretrained(
"suno/bark",
cache_dir=os.path.join(now_dir, "tts", "suno/bark"),
torch_dtype=dtype,
)
bark_model = BarkModel.from_pretrained(
"suno/bark",
cache_dir=os.path.join(now_dir, "tts", "suno/bark"),
torch_dtype=dtype,
).to(device)
# bark_model.enable_cpu_offload()
inputs = bark_processor(text=[text], return_tensors="pt", voice_preset=voice_preset)
tensor_dict = {
k: cast_to_device(v, device) if hasattr(v, "to") else v
for k, v in inputs.items()
}
speech_values = bark_model.generate(**tensor_dict, do_sample=True)
sampling_rate = bark_model.generation_config.sample_rate
speech = speech_values.cpu().numpy().squeeze()
return speech, sampling_rate
def use_tts(
tts_text,
tts_voice,
model_path,
index_path,
transpose,
f0_method,
index_rate,
crepe_hop_length,
f0_autotune,
tts_method,
):
if tts_voice == None:
return
output_folder = "assets/audios/audio-outputs"
os.makedirs(output_folder, exist_ok=True)
output_count = 1 # Contador para nombres de archivo únicos
while True:
converted_tts_filename = os.path.join(output_folder, f"tts_out_{output_count}.wav")
bark_out_filename = os.path.join(output_folder, f"bark_out_{output_count}.wav")
if not os.path.exists(converted_tts_filename) and not os.path.exists(bark_out_filename):
break
output_count += 1
if "SET_LIMIT" == os.getenv("DEMO"):
if len(tts_text) > 60:
tts_text = tts_text[:60]
print("DEMO; limit to 60 characters")
language = tts_voice[:2]
if tts_method == "Edge-tts":
try:
# nest_asyncio.apply() # gradio;not
asyncio.run(
edge_tts.Communicate(
tts_text, "-".join(tts_voice.split("-")[:-1])
).save(converted_tts_filename)
)
except:
try:
tts = gTTS(tts_text, lang=language)
tts.save(converted_tts_filename)
tts.save
print(
f"No audio was received. Please change the tts voice for {tts_voice}. USING gTTS."
)
except:
tts = gTTS("a", lang=language)
tts.save(converted_tts_filename)
print("Error: Audio will be replaced.")
try:
vc.get_vc(model_path)
info_, (sample_, audio_output_) = vc.vc_single_dont_save(
sid=0,
input_audio_path1=converted_tts_filename,
f0_up_key=transpose,
f0_file=None,
f0_method=f0_method,
file_index="",
file_index2=index_path,
index_rate=index_rate,
filter_radius=int(3),
resample_sr=int(0),
rms_mix_rate=float(0.25),
protect=float(0.33),
crepe_hop_length=crepe_hop_length,
f0_autotune=f0_autotune,
f0_min=50,
note_min=50,
f0_max=1100,
note_max=1100,
)
# Genera un nombre de archivo único para el archivo procesado por vc.vc_single_dont_save
vc_output_filename = os.path.join(output_folder, f"converted_tts_{output_count}.wav")
# Guarda el archivo de audio procesado por vc.vc_single_dont_save
wavfile.write(
vc_output_filename,
rate=sample_,
data=audio_output_,
)
return vc_output_filename,converted_tts_filename
except Exception as e:
print(f"{e}")
return None, None
elif tts_method == "Bark-tts":
try:
script = tts_text.replace("\n", " ").strip()
sentences = sent_tokenize(script)
print(sentences)
silence = np.zeros(int(0.25 * SAMPLE_RATE))
pieces = []
for sentence in sentences:
audio_array, _ = __bark__(sentence, tts_voice.split("-")[0])
pieces += [audio_array, silence.copy()]
sf.write(
file=bark_out_filename, samplerate=SAMPLE_RATE, data=np.concatenate(pieces)
)
vc.get_vc(model_path)
info_, (sample_, audio_output_) = vc.vc_single_dont_save(
sid=0,
input_audio_path1=os.path.join(
now_dir, "assets", "audios", "audio-outputs", "bark_out.wav"
), # f"audio2/{filename}",
f0_up_key=transpose, # transpose for m to f and reverse 0 12
f0_file=None,
f0_method=f0_method,
file_index="", # dir pwd?
file_index2=index_path,
# file_big_npy1,
index_rate=index_rate,
filter_radius=int(3),
resample_sr=int(0),
rms_mix_rate=float(0.25),
protect=float(0.33),
crepe_hop_length=crepe_hop_length,
f0_autotune=f0_autotune,
f0_min=50,
note_min=50,
f0_max=1100,
note_max=1100,
)
vc_output_filename = os.path.join(output_folder, f"converted_bark_{output_count}.wav")
# Guarda el archivo de audio procesado por vc.vc_single_dont_save
wavfile.write(
vc_output_filename,
rate=sample_,
data=audio_output_,
)
return vc_output_filename, bark_out_filename
except Exception as e:
print(f"{e}")
return None, None
|