File size: 11,492 Bytes
c509e76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import cv2
import numpy as np
import copy
import torch
import torch
import itertools
import torch.nn as nn
from torch.autograd import Function, Variable

def reorder(myPoints):
    myPoints = myPoints.reshape((4, 2))
    myPointsNew = np.zeros((4, 1, 2), dtype=np.int32)
    add = myPoints.sum(1)
    myPointsNew[0] = myPoints[np.argmin(add)]
    myPointsNew[3] =myPoints[np.argmax(add)]
    diff = np.diff(myPoints, axis=1)
    myPointsNew[1] =myPoints[np.argmin(diff)]
    myPointsNew[2] = myPoints[np.argmax(diff)]
    return myPointsNew


def findMiddle(corners,mask,points=[0.25,0.5,0.75]):
    num_middle_points = len(points)
    top = [np.array([])]*num_middle_points
    bottom = [np.array([])]*num_middle_points
    left = [np.array([])]*num_middle_points
    right = [np.array([])]*num_middle_points

    center_top = []
    center_bottom = []
    center_left = []
    center_right = []

    center = (int((corners[0][0][1]+corners[3][0][1])/2),int((corners[0][0][0]+corners[3][0][0])/2))
    for ratio in points:

        center_top.append( (center[0],int(corners[0][0][0]*(1-ratio)+corners[1][0][0]*ratio)) )

        center_bottom.append( (center[0],int(corners[2][0][0]*(1-ratio)+corners[3][0][0]*ratio)) )

        center_left.append( (int(corners[0][0][1]*(1-ratio)+corners[2][0][1]*ratio),center[1]) )

        center_right.append( (int(corners[1][0][1]*(1-ratio)+corners[3][0][1]*ratio),center[1]) )

    for i in range(0,center[0],1):
        for j in range(num_middle_points):
            if top[j].size==0:
                if mask[i,center_top[j][1]]==255:
                    top[j] = np.asarray([center_top[j][1],i])
                    top[j] = top[j].reshape(1,2)

    for i in range(mask.shape[0]-1,center[0],-1):
        for j in range(num_middle_points):
            if bottom[j].size==0:
                if mask[i,center_bottom[j][1]]==255:
                    bottom[j] = np.asarray([center_bottom[j][1],i])
                    bottom[j] = bottom[j].reshape(1,2)

    for i in range(mask.shape[1]-1,center[1],-1):
        for j in range(num_middle_points):
            if right[j].size==0:
                if mask[center_right[j][0],i]==255:
                    right[j] = np.asarray([i,center_right[j][0]])
                    right[j] = right[j].reshape(1,2)

    for i in range(0,center[1]):
        for j in range(num_middle_points):
            if left[j].size==0:
                if mask[center_left[j][0],i]==255:
                    left[j] = np.asarray([i,center_left[j][0]])
                    left[j] = left[j].reshape(1,2) 

    return np.asarray(top+bottom+left+right)

def DP_algorithmv1(contours):
    biggest = np.array([])
    max_area = 0
    step = 0.001
    count = 0
    # while biggest.size==0:
    while True:
        for i in contours:
            # print(i.shape)
            area = cv2.contourArea(i)
            # print(area,cv2.arcLength(i, True))
            if area > cv2.arcLength(i, True)*10:
                peri = cv2.arcLength(i, True)
                approx = cv2.approxPolyDP(i, (0.01+step*count) * peri, True)
                if area > max_area and len(approx) == 4:
                    max_area = area
                    biggest_contours = i
                    biggest = approx
                    break
                    if abs(max_area - cv2.contourArea(biggest))/max_area > 0.3:
                        biggest = np.array([])
        count += 1
        if count > 200:
            break
    temp = biggest[0]
    return biggest,max_area, biggest_contours

def DP_algorithm(contours):
    biggest = np.array([])
    max_area = 0
    step = 0.001
    count = 0

    ### largest contours
    for i in contours:
        area = cv2.contourArea(i)
        if area > max_area:
            max_area = area
            biggest_contours = i
    peri = cv2.arcLength(biggest_contours, True)

    ### find four corners
    while True:
        approx = cv2.approxPolyDP(biggest_contours, (0.01+step*count) * peri, True)
        if len(approx) == 4:
            biggest = approx
            break
            # if abs(max_area - cv2.contourArea(biggest))/max_area > 0.2:
            # if abs(max_area - cv2.contourArea(biggest))/max_area > 0.4:
                # biggest = np.array([])
        count += 1
        if count > 200:
            break
    return biggest,max_area, biggest_contours

def drawRectangle(img,biggest,color,thickness):
    cv2.line(img, (biggest[0][0][0], biggest[0][0][1]), (biggest[1][0][0], biggest[1][0][1]), color, thickness)
    cv2.line(img, (biggest[0][0][0], biggest[0][0][1]), (biggest[2][0][0], biggest[2][0][1]), color, thickness)
    cv2.line(img, (biggest[3][0][0], biggest[3][0][1]), (biggest[2][0][0], biggest[2][0][1]), color, thickness)
    cv2.line(img, (biggest[3][0][0], biggest[3][0][1]), (biggest[1][0][0], biggest[1][0][1]), color, thickness)
    return img

def minAreaRect(contours,img):
    # biggest = np.array([])
    max_area = 0
    for i in contours:
        area = cv2.contourArea(i)
        if area > max_area:
            peri = cv2.arcLength(i, True)
            rect = cv2.minAreaRect(i)
            points = cv2.boxPoints(rect)
            max_area = area
    return points

def cropRectangle(img,biggest):
    # print(biggest)
    w = np.abs(biggest[0][0][0] - biggest[1][0][0])
    h = np.abs(biggest[0][0][1] - biggest[2][0][1])
    new_img = np.zeros((w,h,img.shape[-1]),dtype=np.uint8)
    new_img = img[biggest[0][0][1]:biggest[0][0][1]+h,biggest[0][0][0]:biggest[0][0][0]+w]
    return new_img

def cvimg2torch(img,min=0,max=1):
    '''
    input:
        im -> ndarray uint8 HxWxC 
    return
        tensor -> torch.tensor BxCxHxW 
    '''
    if len(img.shape)==2:
        img = np.expand_dims(img,axis=-1)
    img = img.astype(float) / 255.0
    img = img.transpose(2, 0, 1) # NHWC -> NCHW
    img = np.expand_dims(img, 0)
    img = torch.from_numpy(img).float()
    return img

def torch2cvimg(tensor,min=0,max=1):
    '''
    input:
        tensor -> torch.tensor BxCxHxW C can be 1,3
    return
        im -> ndarray uint8 HxWxC 
    '''
    im_list = []
    for i in range(tensor.shape[0]):
        im = tensor.detach().cpu().data.numpy()[i]
        im = im.transpose(1,2,0)
        im = np.clip(im,min,max)
        im = ((im-min)/(max-min)*255).astype(np.uint8)
        im_list.append(im)
    return im_list



class TPSGridGen(nn.Module):
    def __init__(self, target_height, target_width, target_control_points):
        '''
        target_control_points -> torch.tensor  num_pointx2 -1~1
        source_control_points -> torch.tensor  batch_size x num_point x 2 -1~1
        return:
            grid -> batch_size x hw x 2 -1~1
        '''
        super(TPSGridGen, self).__init__()
        assert target_control_points.ndimension() == 2
        assert target_control_points.size(1) == 2
        N = target_control_points.size(0)
        self.num_points = N
        target_control_points = target_control_points.float()

        # create padded kernel matrix
        forward_kernel = torch.zeros(N + 3, N + 3)
        target_control_partial_repr = self.compute_partial_repr(target_control_points, target_control_points)
        forward_kernel[:N, :N].copy_(target_control_partial_repr)
        forward_kernel[:N, -3].fill_(1)
        forward_kernel[-3, :N].fill_(1)
        forward_kernel[:N, -2:].copy_(target_control_points)
        forward_kernel[-2:, :N].copy_(target_control_points.transpose(0, 1))
        # compute inverse matrix
        inverse_kernel = torch.inverse(forward_kernel)

        # create target cordinate matrix
        HW = target_height * target_width
        target_coordinate = list(itertools.product(range(target_height), range(target_width)))
        target_coordinate = torch.Tensor(target_coordinate) # HW x 2
        Y, X = target_coordinate.split(1, dim = 1)
        Y = Y * 2 / (target_height - 1) - 1
        X = X * 2 / (target_width - 1) - 1
        target_coordinate = torch.cat([X, Y], dim = 1) # convert from (y, x) to (x, y)
        target_coordinate_partial_repr = self.compute_partial_repr(target_coordinate.to(target_control_points.device), target_control_points)
        target_coordinate_repr = torch.cat([
            target_coordinate_partial_repr, torch.ones(HW, 1), target_coordinate
        ], dim = 1)

        # register precomputed matrices
        self.register_buffer('inverse_kernel', inverse_kernel)
        self.register_buffer('padding_matrix', torch.zeros(3, 2))
        self.register_buffer('target_coordinate_repr', target_coordinate_repr)

    def forward(self, source_control_points):
        assert source_control_points.ndimension() == 3
        assert source_control_points.size(1) == self.num_points
        assert source_control_points.size(2) == 2
        batch_size = source_control_points.size(0)

        Y = torch.cat([source_control_points, Variable(self.padding_matrix.expand(batch_size, 3, 2))], 1)
        mapping_matrix = torch.matmul(Variable(self.inverse_kernel), Y)
        source_coordinate = torch.matmul(Variable(self.target_coordinate_repr), mapping_matrix)
        return source_coordinate
    # phi(x1, x2) = r^2 * log(r), where r = ||x1 - x2||_2
    def compute_partial_repr(self, input_points, control_points):
        N = input_points.size(0)
        M = control_points.size(0)
        pairwise_diff = input_points.view(N, 1, 2) - control_points.view(1, M, 2)
        # original implementation, very slow
        # pairwise_dist = torch.sum(pairwise_diff ** 2, dim = 2) # square of distance
        pairwise_diff_square = pairwise_diff * pairwise_diff
        pairwise_dist = pairwise_diff_square[:, :, 0] + pairwise_diff_square[:, :, 1]
        repr_matrix = 0.5 * pairwise_dist * torch.log(pairwise_dist)
        # fix numerical error for 0 * log(0), substitute all nan with 0
        mask = repr_matrix != repr_matrix
        repr_matrix.masked_fill_(mask, 0)
        return repr_matrix




 
    ### deside wheather further process
    # point_area = cv2.contourArea(np.concatenate((biggest_angle[0].reshape(1,1,2),middle[0:3],biggest_angle[1].reshape(1,1,2),middle[9:12],biggest_angle[3].reshape(1,1,2),middle[3:6][::-1],biggest_angle[2].reshape(1,1,2),middle[6:9][::-1]),axis=0))
    #### 最小外接矩形
    # rect = cv2.minAreaRect(contour) # 得到最小外接矩形的(中心(x,y), (宽,高), 旋转角度)
    # box = cv2.boxPoints(rect) # cv2.boxPoints(rect) for OpenCV 3.x 获取最小外接矩形的4个顶点坐标
    # box = np.int0(box)
    # box = box.reshape((4,1,2))
    # minrect_area = cv2.contourArea(box)
    # print(abs(minrect_area-point_area)/point_area)
    #### 四个角点 IOU
    # biggest_box = np.concatenate((biggest_angle[0,:,:].reshape(1,1,2),biggest_angle[2,:,:].reshape(1,1,2),biggest_angle[3,:,:].reshape(1,1,2),biggest_angle[1,:,:].reshape(1,1,2)),axis=0)
    # biggest_mask = np.zeros_like(mask)
    # # corner_area = cv2.contourArea(biggest_box)
    # cv2.drawContours(biggest_mask,[biggest_box], -1, color=255, thickness=-1)
    
    # smooth = 1e-5
    # biggest_mask_ = biggest_mask > 50
    # mask_ = mask > 50
    # intersection = (biggest_mask_ & mask_).sum()
    # union = (biggest_mask_ | mask_).sum()
    # iou = (intersection + smooth) / (union + smooth)
    # if iou > 0.975:
    #     skip = True
    # else:
    #     skip = False
    # print(iou)
    # cv2.imshow('mask',cv2.resize(mask,(512,512)))
    # cv2.imshow('biggest_mask',cv2.resize(biggest_mask,(512,512)))
    # cv2.waitKey(0)