Spaces:
Sleeping
Sleeping
File size: 7,516 Bytes
e8051be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
"""
Vector Storage Module
Handles storing chunks and embeddings in Qdrant vector database.
"""
import numpy as np
from typing import List
from pathlib import Path
from qdrant_client import QdrantClient
from qdrant_client.models import Distance, VectorParams, PointStruct
class VectorStorage:
"""Handles vector storage operations with Qdrant."""
def __init__(self, base_db_path: Path):
"""
Initialize the vector storage.
Args:
base_db_path: Base path for storing Qdrant databases
"""
self.base_db_path = base_db_path
async def store_in_qdrant(self, chunks: List[str], embeddings: np.ndarray, doc_id: str):
"""
Store chunks and embeddings in Qdrant.
Args:
chunks: List of text chunks
embeddings: Corresponding embeddings array
doc_id: Document identifier
"""
if len(chunks) != embeddings.shape[0]:
raise ValueError(f"Chunk count ({len(chunks)}) doesn't match embedding count ({embeddings.shape[0]})")
collection_name = f"{doc_id}_collection"
db_path = self.base_db_path / f"{collection_name}.db"
client = QdrantClient(path=str(db_path))
print(f"πΎ Storing {len(chunks)} vectors in collection: {collection_name}")
try:
# Create or recreate collection
await self._setup_collection(client, collection_name, embeddings.shape[1])
# Prepare and upload points
await self._upload_points(client, collection_name, chunks, embeddings, doc_id)
print(f"β
Successfully stored all vectors in Qdrant")
finally:
client.close()
async def _setup_collection(self, client: QdrantClient, collection_name: str, embedding_dim: int):
"""
Set up Qdrant collection, recreating if it exists.
Args:
client: Qdrant client
collection_name: Name of the collection
embedding_dim: Dimension of embeddings
"""
# Delete existing collection if it exists
try:
client.delete_collection(collection_name)
print(f"ποΈ Deleted existing collection: {collection_name}")
except Exception:
pass # Collection might not exist
# Create new collection
client.create_collection(
collection_name=collection_name,
vectors_config=VectorParams(
size=embedding_dim,
distance=Distance.COSINE
)
)
print(f"β
Created new collection: {collection_name}")
async def _upload_points(self, client: QdrantClient, collection_name: str,
chunks: List[str], embeddings: np.ndarray, doc_id: str):
"""
Upload points to Qdrant collection in batches.
Args:
client: Qdrant client
collection_name: Name of the collection
chunks: Text chunks
embeddings: Embedding vectors
doc_id: Document identifier
"""
# Prepare points
points = []
for i in range(len(chunks)):
points.append(
PointStruct(
id=i,
vector=embeddings[i].tolist(),
payload={
"text": chunks[i],
"chunk_id": i,
"doc_id": doc_id,
"char_count": len(chunks[i]),
"word_count": len(chunks[i].split())
}
)
)
# Upload in batches to handle large documents
batch_size = 100
total_batches = (len(points) + batch_size - 1) // batch_size
for i in range(0, len(points), batch_size):
batch = points[i:i + batch_size]
batch_num = (i // batch_size) + 1
print(f" Uploading batch {batch_num}/{total_batches} ({len(batch)} points)")
client.upsert(collection_name=collection_name, points=batch)
print(f"β
Uploaded {len(points)} points in {total_batches} batches")
def collection_exists(self, doc_id: str) -> bool:
"""
Check if a collection exists for the given document ID.
Args:
doc_id: Document identifier
Returns:
bool: True if collection exists, False otherwise
"""
collection_name = f"{doc_id}_collection"
db_path = self.base_db_path / f"{collection_name}.db"
return db_path.exists()
def get_collection_info(self, doc_id: str) -> dict:
"""
Get information about a collection.
Args:
doc_id: Document identifier
Returns:
dict: Collection information
"""
collection_name = f"{doc_id}_collection"
db_path = self.base_db_path / f"{collection_name}.db"
if not db_path.exists():
return {
"collection_name": collection_name,
"exists": False,
"path": str(db_path)
}
try:
client = QdrantClient(path=str(db_path))
try:
collection_info = client.get_collection(collection_name)
return {
"collection_name": collection_name,
"exists": True,
"path": str(db_path),
"vectors_count": collection_info.vectors_count,
"status": collection_info.status
}
finally:
client.close()
except Exception as e:
return {
"collection_name": collection_name,
"exists": True,
"path": str(db_path),
"error": str(e)
}
def delete_collection(self, doc_id: str) -> bool:
"""
Delete a collection and its database file.
Args:
doc_id: Document identifier
Returns:
bool: True if successfully deleted, False otherwise
"""
collection_name = f"{doc_id}_collection"
db_path = self.base_db_path / f"{collection_name}.db"
try:
if db_path.exists():
# Try to delete collection properly first
try:
client = QdrantClient(path=str(db_path))
client.delete_collection(collection_name)
client.close()
except Exception:
pass # Collection might not exist or be corrupted
# Remove database directory
import shutil
shutil.rmtree(db_path, ignore_errors=True)
print(f"ποΈ Deleted collection: {collection_name}")
return True
except Exception as e:
print(f"β Error deleting collection {collection_name}: {e}")
return False
return True # Nothing to delete
|