File size: 9,595 Bytes
e8051be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
"""

Metadata Manager Module



Handles document metadata storage and retrieval operations.

"""

import json
import asyncio
import hashlib
from typing import List, Dict, Any
from pathlib import Path
from config.config import EMBEDDING_MODEL, CHUNK_SIZE, CHUNK_OVERLAP


class MetadataManager:
    """Handles document metadata operations."""
    
    def __init__(self, base_db_path: Path):
        """

        Initialize the metadata manager.

        

        Args:

            base_db_path: Base path for storing metadata files

        """
        self.base_db_path = base_db_path
        self.processed_docs_file = self.base_db_path / "processed_documents.json"
        self.processed_docs = self._load_processed_docs()
    
    def _load_processed_docs(self) -> Dict[str, Dict]:
        """Load the registry of processed documents."""
        if self.processed_docs_file.exists():
            try:
                with open(self.processed_docs_file, 'r', encoding='utf-8') as f:
                    return json.load(f)
            except Exception as e:
                print(f"⚠️ Warning: Could not load processed docs registry: {e}")
        return {}
    
    def _save_processed_docs(self):
        """Save the registry of processed documents."""
        try:
            with open(self.processed_docs_file, 'w', encoding='utf-8') as f:
                json.dump(self.processed_docs, f, indent=2, ensure_ascii=False)
        except Exception as e:
            print(f"⚠️ Warning: Could not save processed docs registry: {e}")
    
    def generate_doc_id(self, document_url: str) -> str:
        """

        Generate a unique document ID from the URL.

        

        Args:

            document_url: URL of the document

            

        Returns:

            str: Unique document ID

        """
        url_hash = hashlib.md5(document_url.encode()).hexdigest()[:12]
        return f"doc_{url_hash}"
    
    def is_document_processed(self, document_url: str) -> bool:
        """

        Check if a document has already been processed.

        

        Args:

            document_url: URL of the document

            

        Returns:

            bool: True if document is already processed

        """
        doc_id = self.generate_doc_id(document_url)
        return doc_id in self.processed_docs
    
    def get_document_info(self, document_url: str) -> Dict[str, Any]:
        """

        Get information about a processed document.

        

        Args:

            document_url: URL of the document

            

        Returns:

            Dict[str, Any]: Document information or empty dict if not found

        """
        doc_id = self.generate_doc_id(document_url)
        return self.processed_docs.get(doc_id, {})
    
    def save_document_metadata(self, chunks: List[str], doc_id: str, document_url: str):
        """

        Save document metadata to JSON file and update registry.

        

        Args:

            chunks: List of text chunks

            doc_id: Document identifier

            document_url: Original document URL

        """
        # Calculate statistics
        total_chars = sum(len(chunk) for chunk in chunks)
        total_words = sum(len(chunk.split()) for chunk in chunks)
        avg_chunk_size = total_chars / len(chunks) if chunks else 0
        
        # Create metadata object
        metadata = {
            "doc_id": doc_id,
            "document_url": document_url,
            "chunk_count": len(chunks),
            "total_chars": total_chars,
            "total_words": total_words,
            "avg_chunk_size": avg_chunk_size,
            "processed_at": asyncio.get_event_loop().time(),
            "embedding_model": EMBEDDING_MODEL,
            "chunk_size": CHUNK_SIZE,
            "chunk_overlap": CHUNK_OVERLAP,
            "processing_config": {
                "chunk_size": CHUNK_SIZE,
                "chunk_overlap": CHUNK_OVERLAP,
                "embedding_model": EMBEDDING_MODEL
            }
        }
        
        # Save individual document metadata
        metadata_path = self.base_db_path / f"{doc_id}_metadata.json"
        try:
            with open(metadata_path, "w", encoding="utf-8") as f:
                json.dump(metadata, f, indent=2, ensure_ascii=False)
            print(f"✅ Saved individual metadata for {doc_id}")
        except Exception as e:
            print(f"⚠️ Warning: Could not save individual metadata for {doc_id}: {e}")
        
        # Update processed documents registry
        self.processed_docs[doc_id] = {
            "document_url": document_url,
            "chunk_count": len(chunks),
            "processed_at": metadata["processed_at"],
            "collection_name": f"{doc_id}_collection",
            "total_chars": total_chars,
            "total_words": total_words
        }
        self._save_processed_docs()
        
        print(f"✅ Updated registry for document {doc_id}")
    
    def get_document_metadata(self, doc_id: str) -> Dict[str, Any]:
        """

        Load individual document metadata from file.

        

        Args:

            doc_id: Document identifier

            

        Returns:

            Dict[str, Any]: Document metadata or empty dict if not found

        """
        metadata_path = self.base_db_path / f"{doc_id}_metadata.json"
        
        if not metadata_path.exists():
            return {}
        
        try:
            with open(metadata_path, 'r', encoding='utf-8') as f:
                return json.load(f)
        except Exception as e:
            print(f"⚠️ Warning: Could not load metadata for {doc_id}: {e}")
            return {}
    
    def list_processed_documents(self) -> Dict[str, Dict]:
        """

        List all processed documents.

        

        Returns:

            Dict[str, Dict]: Copy of processed documents registry

        """
        return self.processed_docs.copy()
    
    def get_collection_stats(self) -> Dict[str, Any]:
        """

        Get statistics about all collections.

        

        Returns:

            Dict[str, Any]: Collection statistics

        """
        stats = {
            "total_documents": len(self.processed_docs),
            "total_collections": 0,
            "total_chunks": 0,
            "total_characters": 0,
            "total_words": 0,
            "documents": []
        }
        
        for doc_id, info in self.processed_docs.items():
            collection_path = self.base_db_path / f"{info['collection_name']}.db"
            if collection_path.exists():
                stats["total_collections"] += 1
                stats["total_chunks"] += info.get("chunk_count", 0)
                stats["total_characters"] += info.get("total_chars", 0)
                stats["total_words"] += info.get("total_words", 0)
                
                stats["documents"].append({
                    "doc_id": doc_id,
                    "url": info["document_url"],
                    "chunk_count": info.get("chunk_count", 0),
                    "total_chars": info.get("total_chars", 0),
                    "total_words": info.get("total_words", 0),
                    "processed_at": info.get("processed_at", "unknown")
                })
        
        # Add averages
        if stats["total_documents"] > 0:
            stats["avg_chunks_per_doc"] = stats["total_chunks"] / stats["total_documents"]
            stats["avg_chars_per_doc"] = stats["total_characters"] / stats["total_documents"]
            stats["avg_words_per_doc"] = stats["total_words"] / stats["total_documents"]
        
        return stats
    
    def remove_document_metadata(self, doc_id: str) -> bool:
        """

        Remove document metadata and registry entry.

        

        Args:

            doc_id: Document identifier

            

        Returns:

            bool: True if successfully removed, False otherwise

        """
        try:
            # Remove individual metadata file
            metadata_path = self.base_db_path / f"{doc_id}_metadata.json"
            if metadata_path.exists():
                metadata_path.unlink()
                print(f"🗑️ Removed metadata file for {doc_id}")
            
            # Remove from registry
            if doc_id in self.processed_docs:
                del self.processed_docs[doc_id]
                self._save_processed_docs()
                print(f"🗑️ Removed registry entry for {doc_id}")
            
            return True
            
        except Exception as e:
            print(f"❌ Error removing metadata for {doc_id}: {e}")
            return False
    
    def update_document_status(self, doc_id: str, status_info: Dict[str, Any]):
        """

        Update status information for a document.

        

        Args:

            doc_id: Document identifier

            status_info: Status information to update

        """
        if doc_id in self.processed_docs:
            self.processed_docs[doc_id].update(status_info)
            self._save_processed_docs()
            print(f"✅ Updated status for document {doc_id}")
    
    def get_registry_path(self) -> str:
        """

        Get the path to the processed documents registry.

        

        Returns:

            str: Path to registry file

        """
        return str(self.processed_docs_file)