Spaces:
Sleeping
Sleeping
File size: 13,080 Bytes
427d150 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
"""
Image transforms functions for data augmentation
Credit to Dr. Jo Schlemper
"""
from collections.abc import Sequence
import cv2
import numpy as np
import scipy
from scipy.ndimage.filters import gaussian_filter
from scipy.ndimage.interpolation import map_coordinates
from numpy.lib.stride_tricks import as_strided
import numpy as np
import cv2
from scipy.ndimage import map_coordinates
from numpy.lib.stride_tricks import as_strided
from multiprocessing import Pool
import albumentations as A
import time
###### UTILITIES ######
def random_num_generator(config, random_state=np.random):
if config[0] == 'uniform':
ret = random_state.uniform(config[1], config[2], 1)[0]
elif config[0] == 'lognormal':
ret = random_state.lognormal(config[1], config[2], 1)[0]
else:
#print(config)
raise Exception('unsupported format')
return ret
def get_translation_matrix(translation):
""" translation: [tx, ty] """
tx, ty = translation
translation_matrix = np.array([[1, 0, tx],
[0, 1, ty],
[0, 0, 1]])
return translation_matrix
def get_rotation_matrix(rotation, input_shape, centred=True):
theta = np.pi / 180 * np.array(rotation)
if centred:
rotation_matrix = cv2.getRotationMatrix2D((input_shape[0]/2, input_shape[1]//2), rotation, 1)
rotation_matrix = np.vstack([rotation_matrix, [0, 0, 1]])
else:
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[0, 0, 1]])
return rotation_matrix
def get_zoom_matrix(zoom, input_shape, centred=True):
zx, zy = zoom
if centred:
zoom_matrix = cv2.getRotationMatrix2D((input_shape[0]/2, input_shape[1]//2), 0, zoom[0])
zoom_matrix = np.vstack([zoom_matrix, [0, 0, 1]])
else:
zoom_matrix = np.array([[zx, 0, 0],
[0, zy, 0],
[0, 0, 1]])
return zoom_matrix
def get_shear_matrix(shear_angle):
theta = (np.pi * shear_angle) / 180
shear_matrix = np.array([[1, -np.sin(theta), 0],
[0, np.cos(theta), 0],
[0, 0, 1]])
return shear_matrix
###### AFFINE TRANSFORM ######
class RandomAffine(object):
"""Apply random affine transformation on a numpy.ndarray (H x W x C)
Comment by co1818: this is still doing affine on 2d (H x W plane).
A same transform is applied to all C channels
Parameter:
----------
alpha: Range [0, 4] seems good for small images
order: interpolation method (c.f. opencv)
"""
def __init__(self,
rotation_range=None,
translation_range=None,
shear_range=None,
zoom_range=None,
zoom_keep_aspect=False,
interp='bilinear',
use_3d=False,
order=3):
"""
Perform an affine transforms.
Arguments
---------
rotation_range : one integer or float
image will be rotated randomly between (-degrees, degrees)
translation_range : (x_shift, y_shift)
shifts in pixels
*NOT TESTED* shear_range : float
image will be sheared randomly between (-degrees, degrees)
zoom_range : (zoom_min, zoom_max)
list/tuple with two floats between [0, infinity).
first float should be less than the second
lower and upper bounds on percent zoom.
Anything less than 1.0 will zoom in on the image,
anything greater than 1.0 will zoom out on the image.
e.g. (0.7, 1.0) will only zoom in,
(1.0, 1.4) will only zoom out,
(0.7, 1.4) will randomly zoom in or out
"""
self.rotation_range = rotation_range
self.translation_range = translation_range
self.shear_range = shear_range
self.zoom_range = zoom_range
self.zoom_keep_aspect = zoom_keep_aspect
self.interp = interp
self.order = order
self.use_3d = use_3d
def build_M(self, input_shape):
tfx = []
final_tfx = np.eye(3)
if self.rotation_range:
rot = np.random.uniform(-self.rotation_range, self.rotation_range)
tfx.append(get_rotation_matrix(rot, input_shape))
if self.translation_range:
tx = np.random.uniform(-self.translation_range[0], self.translation_range[0])
ty = np.random.uniform(-self.translation_range[1], self.translation_range[1])
tfx.append(get_translation_matrix((tx,ty)))
if self.shear_range:
rot = np.random.uniform(-self.shear_range, self.shear_range)
tfx.append(get_shear_matrix(rot))
if self.zoom_range:
sx = np.random.uniform(self.zoom_range[0], self.zoom_range[1])
if self.zoom_keep_aspect:
sy = sx
else:
sy = np.random.uniform(self.zoom_range[0], self.zoom_range[1])
tfx.append(get_zoom_matrix((sx, sy), input_shape))
for tfx_mat in tfx:
final_tfx = np.dot(tfx_mat, final_tfx)
return final_tfx.astype(np.float32)
def __call__(self, image):
# build matrix
input_shape = image.shape[:2]
M = self.build_M(input_shape)
res = np.zeros_like(image)
#if isinstance(self.interp, Sequence):
if type(self.order) is list or type(self.order) is tuple:
for i, intp in enumerate(self.order):
if self.use_3d:
res[..., i] = affine_transform_3d_via_M(image[..., i], M[:2], interp=intp)
else:
res[..., i] = affine_transform_via_M(image[..., i], M[:2], interp=intp)
else:
# squeeze if needed
orig_shape = image.shape
image_s = np.squeeze(image)
if self.use_3d:
res = affine_transform_3d_via_M(image_s, M[:2], interp=self.order)
else:
res = affine_transform_via_M(image_s, M[:2], interp=self.order)
res = res.reshape(orig_shape)
#res = affine_transform_via_M(image, M[:2], interp=self.order)
return res
def affine_transform_via_M(image, M, borderMode=cv2.BORDER_CONSTANT, interp=cv2.INTER_NEAREST):
imshape = image.shape
shape_size = imshape[:2]
# Random affine
warped = cv2.warpAffine(image.reshape(shape_size + (-1,)), M, shape_size[::-1],
flags=interp, borderMode=borderMode)
#print(imshape, warped.shape)
warped = warped[..., np.newaxis].reshape(imshape)
return warped
def affine_transform_3d_via_M(vol, M, borderMode=cv2.BORDER_CONSTANT, interp=cv2.INTER_NEAREST):
"""
vol should be of shape (nx, ny, n1, ..., nm)
"""
# go over slice slice
res = np.zeros_like(vol)
for i in range(vol.shape[2]):
res[:, :, i] = affine_transform_via_M(vol[:,:,i], M, borderMode=borderMode, interp=interp)
return res
###### ELASTIC TRANSFORM ######
def elastic_transform(image, alpha=1000, sigma=30, spline_order=1, mode='nearest', random_state=np.random):
"""Elastic deformation of image as described in [Simard2003]_.
.. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for
Convolutional Neural Networks applied to Visual Document Analysis", in
Proc. of the International Conference on Document Analysis and
Recognition, 2003.
"""
assert image.ndim == 3
shape = image.shape[:2]
dx = gaussian_filter((random_state.rand(*shape) * 2 - 1),
sigma, mode="constant", cval=0) * alpha
dy = gaussian_filter((random_state.rand(*shape) * 2 - 1),
sigma, mode="constant", cval=0) * alpha
x, y = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), indexing='ij')
indices = [np.reshape(x + dx, (-1, 1)), np.reshape(y + dy, (-1, 1))]
result = np.empty_like(image)
for i in range(image.shape[2]):
result[:, :, i] = map_coordinates(
image[:, :, i], indices, order=spline_order, mode=mode).reshape(shape)
return result
def elastic_transform_nd_3d(image, **kwargs):
"""
image_w_mask should be of shape (nx, ny, nz, 3)
"""
image_w_mask = image
start_time = time.time()
elastic_transform = A.ElasticTransform(alpha=10, sigma=20, alpha_affine=15, interpolation=1, border_mode=4, always_apply=True, p=0.5)
# print(f"elastic transform initilization took {time.time() - start_time} seconds")
img = image_w_mask[..., 0]
label = image_w_mask[..., -1]
transformed = elastic_transform(image=img, mask=label)
t_img = transformed['image'][..., np.newaxis]
t_mask = transformed['mask'][..., np.newaxis]
t_mask_bg = 1 - t_mask
t_mask = np.concatenate([t_mask_bg, t_mask], axis=-1)
comp = np.concatenate([t_img, t_mask], axis=-1)
return comp
def elastic_transform_nd(image, alpha, sigma, random_state=None, order=1, lazy=False):
"""Expects data to be (nx, ny, n1 ,..., nm)
params:
------
alpha:
the scaling parameter.
E.g.: alpha=2 => distorts images up to 2x scaling
sigma:
standard deviation of gaussian filter.
E.g.
low (sig~=1e-3) => no smoothing, pixelated.
high (1/5 * imsize) => smooth, more like affine.
very high (1/2*im_size) => translation
"""
if random_state is None:
random_state = np.random.RandomState(None)
shape = image.shape
imsize = shape[:2]
dim = shape[2:]
# Random affine
blur_size = int(4*sigma) | 1
dx = cv2.GaussianBlur(random_state.rand(*imsize)*2-1,
ksize=(blur_size, blur_size), sigmaX=sigma) * alpha
dy = cv2.GaussianBlur(random_state.rand(*imsize)*2-1,
ksize=(blur_size, blur_size), sigmaX=sigma) * alpha
# use as_strided to copy things over across n1...nn channels
dx = as_strided(dx.astype(np.float32),
strides=(0,) * len(dim) + (4*shape[1], 4),
shape=dim+(shape[0], shape[1]))
dx = np.transpose(dx, axes=(-2, -1) + tuple(range(len(dim))))
dy = as_strided(dy.astype(np.float32),
strides=(0,) * len(dim) + (4*shape[1], 4),
shape=dim+(shape[0], shape[1]))
dy = np.transpose(dy, axes=(-2, -1) + tuple(range(len(dim))))
coord = np.meshgrid(*[np.arange(shape_i) for shape_i in (shape[1], shape[0]) + dim])
indices = [np.reshape(e+de, (-1, 1)) for e, de in zip([coord[1], coord[0]] + coord[2:],
[dy, dx] + [0] * len(dim))]
if lazy:
return indices
res = map_coordinates(image, indices, order=order, mode='reflect').reshape(shape)
return res
class ElasticTransform(object):
"""Apply elastic transformation on a numpy.ndarray (H x W x C)
"""
def __init__(self, alpha, sigma, order=1):
self.alpha = alpha
self.sigma = sigma
self.order = order
def __call__(self, image):
if isinstance(self.alpha, Sequence):
alpha = random_num_generator(self.alpha)
else:
alpha = self.alpha
if isinstance(self.sigma, Sequence):
sigma = random_num_generator(self.sigma)
else:
sigma = self.sigma
return elastic_transform_nd(image, alpha=alpha, sigma=sigma, order=self.order)
class RandomFlip3D(object):
def __init__(self, h=True, v=True, t=True, p=0.5):
"""
Randomly flip an image horizontally and/or vertically with
some probability.
Arguments
---------
h : boolean
whether to horizontally flip w/ probability p
v : boolean
whether to vertically flip w/ probability p
p : float between [0,1]
probability with which to apply allowed flipping operations
"""
self.horizontal = h
self.vertical = v
self.depth = t
self.p = p
def __call__(self, x, y=None):
# horizontal flip with p = self.p
if self.horizontal:
if np.random.random() < self.p:
x = x[::-1, ...]
# vertical flip with p = self.p
if self.vertical:
if np.random.random() < self.p:
x = x[:, ::-1, ...]
if self.depth:
if np.random.random() < self.p:
x = x[..., ::-1]
return x
|