File size: 37,102 Bytes
5a510e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
# pylint: disable=R0801
# pylint: disable=E1101
# pylint: disable=R0402
# pylint: disable=W1203

"""
This is the main file for the UNet3DConditionModel, which defines the UNet3D model architecture.

The UNet3D model is a 3D convolutional neural network designed for image segmentation and
other computer vision tasks. It consists of an encoder, a decoder, and skip connections between
the corresponding layers of the encoder and decoder. The model can handle 3D data and
performs well on tasks such as image segmentation, object detection, and video analysis.

This file contains the necessary imports, the main UNet3DConditionModel class, and its
methods for setting attention slice, setting gradient checkpointing, setting attention
processor, and the forward method for model inference.

The module provides a comprehensive solution for 3D image segmentation tasks and can be
easily extended for other computer vision tasks as well.
"""

from collections import OrderedDict
from dataclasses import dataclass
from os import PathLike
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.utils.checkpoint
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.attention_processor import AttentionProcessor
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import (SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME,
                             BaseOutput, logging)
from safetensors.torch import load_file

from .resnet import InflatedConv3d, InflatedGroupNorm
from .unet_3d_blocks import (UNetMidBlock3DCrossAttn, get_down_block,
                             get_up_block)

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
class UNet3DConditionOutput(BaseOutput):
    """
    Data class that serves as the output of the UNet3DConditionModel.

    Attributes:
        sample (`torch.FloatTensor`):
            A tensor representing the processed sample. The shape and nature of this tensor will depend on the 
            specific configuration of the model and the input data.
    """
    sample: torch.FloatTensor


class UNet3DConditionModel(ModelMixin, ConfigMixin):
    """
    A 3D UNet model designed to handle conditional image and video generation tasks. This model is particularly 
    suited for tasks that require the generation of 3D data, such as volumetric medical imaging or 3D video 
    generation, while incorporating additional conditioning information.

    The model consists of an encoder-decoder structure with skip connections. It utilizes a series of downsampling 
    and upsampling blocks, with a middle block for further processing. Each block can be customized with different 
    types of layers and attention mechanisms.

    Parameters:
        sample_size (`int`, optional): The size of the input sample.
        in_channels (`int`, defaults to 8): The number of input channels.
        out_channels (`int`, defaults to 8): The number of output channels.
        center_input_sample (`bool`, defaults to False): Whether to center the input sample.
        flip_sin_to_cos (`bool`, defaults to True): Whether to flip the sine to cosine in the time embedding.
        freq_shift (`int`, defaults to 0): The frequency shift for the time embedding.
        down_block_types (`Tuple[str]`): A tuple of strings specifying the types of downsampling blocks.
        mid_block_type (`str`): The type of middle block.
        up_block_types (`Tuple[str]`): A tuple of strings specifying the types of upsampling blocks.
        only_cross_attention (`Union[bool, Tuple[bool]]`): Whether to use only cross-attention.
        block_out_channels (`Tuple[int]`): A tuple of integers specifying the output channels for each block.
        layers_per_block (`int`, defaults to 2): The number of layers per block.
        downsample_padding (`int`, defaults to 1): The padding used in downsampling.
        mid_block_scale_factor (`float`, defaults to 1): The scale factor for the middle block.
        act_fn (`str`, defaults to 'silu'): The activation function to be used.
        norm_num_groups (`int`, defaults to 32): The number of groups for normalization.
        norm_eps (`float`, defaults to 1e-5): The epsilon for normalization.
        cross_attention_dim (`int`, defaults to 1280): The dimension for cross-attention.
        attention_head_dim (`Union[int, Tuple[int]]`): The dimension for attention heads.
        dual_cross_attention (`bool`, defaults to False): Whether to use dual cross-attention.
        use_linear_projection (`bool`, defaults to False): Whether to use linear projection.
        class_embed_type (`str`, optional): The type of class embedding.
        num_class_embeds (`int`, optional): The number of class embeddings.
        upcast_attention (`bool`, defaults to False): Whether to upcast attention.
        resnet_time_scale_shift (`str`, defaults to 'default'): The time scale shift for the ResNet.
        use_inflated_groupnorm (`bool`, defaults to False): Whether to use inflated group normalization.
        use_motion_module (`bool`, defaults to False): Whether to use a motion module.
        motion_module_resolutions (`Tuple[int]`): A tuple of resolutions for the motion module.
        motion_module_mid_block (`bool`, defaults to False): Whether to use a motion module in the middle block.
        motion_module_decoder_only (`bool`, defaults to False): Whether to use the motion module only in the decoder.
        motion_module_type (`str`, optional): The type of motion module.
        motion_module_kwargs (`dict`): Keyword arguments for the motion module.
        unet_use_cross_frame_attention (`bool`, optional): Whether to use cross-frame attention in the UNet.
        unet_use_temporal_attention (`bool`, optional): Whether to use temporal attention in the UNet.
        use_audio_module (`bool`, defaults to False): Whether to use an audio module.
        audio_attention_dim (`int`, defaults to 768): The dimension for audio attention.

    The model supports various features such as gradient checkpointing, attention processors, and sliced attention 
    computation, making it flexible and efficient for different computational requirements and use cases.

    The forward method of the model accepts a sample, timestep, and encoder hidden states as input, and it returns 
    the processed sample as output. The method also supports additional conditioning information such as class 
    labels, audio embeddings, and masks for specialized tasks.

    The from_pretrained_2d class method allows loading a pre-trained 2D UNet model and adapting it for 3D tasks by 
    incorporating motion modules and other 3D specific features.
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        sample_size: Optional[int] = None,
        in_channels: int = 8,
        out_channels: int = 8,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlock3D",
            "CrossAttnDownBlock3D",
            "CrossAttnDownBlock3D",
            "DownBlock3D",
        ),
        mid_block_type: str = "UNetMidBlock3DCrossAttn",
        up_block_types: Tuple[str] = (
            "UpBlock3D",
            "CrossAttnUpBlock3D",
            "CrossAttnUpBlock3D",
            "CrossAttnUpBlock3D",
        ),
        only_cross_attention: Union[bool, Tuple[bool]] = False,
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
        layers_per_block: int = 2,
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        act_fn: str = "silu",
        norm_num_groups: int = 32,
        norm_eps: float = 1e-5,
        cross_attention_dim: int = 1280,
        attention_head_dim: Union[int, Tuple[int]] = 8,
        dual_cross_attention: bool = False,
        use_linear_projection: bool = False,
        class_embed_type: Optional[str] = None,
        num_class_embeds: Optional[int] = None,
        upcast_attention: bool = False,
        resnet_time_scale_shift: str = "default",
        use_inflated_groupnorm=False,
        # Additional
        use_motion_module=False,
        motion_module_resolutions=(1, 2, 4, 8),
        motion_module_mid_block=False,
        motion_module_decoder_only=False,
        motion_module_type=None,
        motion_module_kwargs=None,
        unet_use_cross_frame_attention=None,
        unet_use_temporal_attention=None,
        # audio
        use_audio_module=False,
        audio_attention_dim=768,
        stack_enable_blocks_name=None,
        stack_enable_blocks_depth=None,
    ):
        super().__init__()

        self.sample_size = sample_size
        time_embed_dim = block_out_channels[0] * 4

        # input
        self.conv_in = InflatedConv3d(
            in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)
        )

        # time
        self.time_proj = Timesteps(
            block_out_channels[0], flip_sin_to_cos, freq_shift)
        timestep_input_dim = block_out_channels[0]

        self.time_embedding = TimestepEmbedding(
            timestep_input_dim, time_embed_dim)

        # class embedding
        if class_embed_type is None and num_class_embeds is not None:
            self.class_embedding = nn.Embedding(
                num_class_embeds, time_embed_dim)
        elif class_embed_type == "timestep":
            self.class_embedding = TimestepEmbedding(
                timestep_input_dim, time_embed_dim)
        elif class_embed_type == "identity":
            self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
        else:
            self.class_embedding = None

        self.down_blocks = nn.ModuleList([])
        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

        if isinstance(only_cross_attention, bool):
            only_cross_attention = [
                only_cross_attention] * len(down_block_types)

        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(down_block_types)

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            res = 2**i
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                cross_attention_dim=cross_attention_dim,
                attn_num_head_channels=attention_head_dim[i],
                downsample_padding=downsample_padding,
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                only_cross_attention=only_cross_attention[i],
                upcast_attention=upcast_attention,
                resnet_time_scale_shift=resnet_time_scale_shift,
                unet_use_cross_frame_attention=unet_use_cross_frame_attention,
                unet_use_temporal_attention=unet_use_temporal_attention,
                use_inflated_groupnorm=use_inflated_groupnorm,
                use_motion_module=use_motion_module
                and (res in motion_module_resolutions)
                and (not motion_module_decoder_only),
                motion_module_type=motion_module_type,
                motion_module_kwargs=motion_module_kwargs,
                use_audio_module=use_audio_module,
                audio_attention_dim=audio_attention_dim,
                depth=i,
                stack_enable_blocks_name=stack_enable_blocks_name,
                stack_enable_blocks_depth=stack_enable_blocks_depth,
            )
            self.down_blocks.append(down_block)

        # mid
        if mid_block_type == "UNetMidBlock3DCrossAttn":
            self.mid_block = UNetMidBlock3DCrossAttn(
                in_channels=block_out_channels[-1],
                temb_channels=time_embed_dim,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                resnet_time_scale_shift=resnet_time_scale_shift,
                cross_attention_dim=cross_attention_dim,
                attn_num_head_channels=attention_head_dim[-1],
                resnet_groups=norm_num_groups,
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                upcast_attention=upcast_attention,
                unet_use_cross_frame_attention=unet_use_cross_frame_attention,
                unet_use_temporal_attention=unet_use_temporal_attention,
                use_inflated_groupnorm=use_inflated_groupnorm,
                use_motion_module=use_motion_module and motion_module_mid_block,
                motion_module_type=motion_module_type,
                motion_module_kwargs=motion_module_kwargs,
                use_audio_module=use_audio_module,
                audio_attention_dim=audio_attention_dim,
                depth=3,
                stack_enable_blocks_name=stack_enable_blocks_name,
                stack_enable_blocks_depth=stack_enable_blocks_depth,
            )
        else:
            raise ValueError(f"unknown mid_block_type : {mid_block_type}")

        # count how many layers upsample the videos
        self.num_upsamplers = 0

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        reversed_attention_head_dim = list(reversed(attention_head_dim))
        only_cross_attention = list(reversed(only_cross_attention))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            res = 2 ** (3 - i)
            is_final_block = i == len(block_out_channels) - 1

            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[
                min(i + 1, len(block_out_channels) - 1)
            ]

            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False

            up_block = get_up_block(
                up_block_type,
                num_layers=layers_per_block + 1,
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
                temb_channels=time_embed_dim,
                add_upsample=add_upsample,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                cross_attention_dim=cross_attention_dim,
                attn_num_head_channels=reversed_attention_head_dim[i],
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                only_cross_attention=only_cross_attention[i],
                upcast_attention=upcast_attention,
                resnet_time_scale_shift=resnet_time_scale_shift,
                unet_use_cross_frame_attention=unet_use_cross_frame_attention,
                unet_use_temporal_attention=unet_use_temporal_attention,
                use_inflated_groupnorm=use_inflated_groupnorm,
                use_motion_module=use_motion_module
                and (res in motion_module_resolutions),
                motion_module_type=motion_module_type,
                motion_module_kwargs=motion_module_kwargs,
                use_audio_module=use_audio_module,
                audio_attention_dim=audio_attention_dim,
                depth=3-i,
                stack_enable_blocks_name=stack_enable_blocks_name,
                stack_enable_blocks_depth=stack_enable_blocks_depth,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        if use_inflated_groupnorm:
            self.conv_norm_out = InflatedGroupNorm(
                num_channels=block_out_channels[0],
                num_groups=norm_num_groups,
                eps=norm_eps,
            )
        else:
            self.conv_norm_out = nn.GroupNorm(
                num_channels=block_out_channels[0],
                num_groups=norm_num_groups,
                eps=norm_eps,
            )
        self.conv_act = nn.SiLU()
        self.conv_out = InflatedConv3d(
            block_out_channels[0], out_channels, kernel_size=3, padding=1
        )

    @property
    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(
            name: str,
            module: torch.nn.Module,
            processors: Dict[str, AttentionProcessor],
        ):
            if hasattr(module, "set_processor"):
                processors[f"{name}.processor"] = module.processor

            for sub_name, child in module.named_children():
                if "temporal_transformer" not in sub_name:
                    fn_recursive_add_processors(
                        f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            if "temporal_transformer" not in name:
                fn_recursive_add_processors(name, module, processors)

        return processors

    def set_attention_slice(self, slice_size):
        r"""
        Enable sliced attention computation.

        When this option is enabled, the attention module will split the input tensor in slices, to compute attention
        in several steps. This is useful to save some memory in exchange for a small speed decrease.

        Args:
            slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
                `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
        """
        sliceable_head_dims = []

        def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
            if hasattr(module, "set_attention_slice"):
                sliceable_head_dims.append(module.sliceable_head_dim)

            for child in module.children():
                fn_recursive_retrieve_slicable_dims(child)

        # retrieve number of attention layers
        for module in self.children():
            fn_recursive_retrieve_slicable_dims(module)

        num_slicable_layers = len(sliceable_head_dims)

        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = [dim // 2 for dim in sliceable_head_dims]
        elif slice_size == "max":
            # make smallest slice possible
            slice_size = num_slicable_layers * [1]

        slice_size = (
            num_slicable_layers * [slice_size]
            if not isinstance(slice_size, list)
            else slice_size
        )

        if len(slice_size) != len(sliceable_head_dims):
            raise ValueError(
                f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
                f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
            )

        for i, size in enumerate(slice_size):
            dim = sliceable_head_dims[i]
            if size is not None and size > dim:
                raise ValueError(
                    f"size {size} has to be smaller or equal to {dim}.")

        # Recursively walk through all the children.
        # Any children which exposes the set_attention_slice method
        # gets the message
        def fn_recursive_set_attention_slice(
            module: torch.nn.Module, slice_size: List[int]
        ):
            if hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size.pop())

            for child in module.children():
                fn_recursive_set_attention_slice(child, slice_size)

        reversed_slice_size = list(reversed(slice_size))
        for module in self.children():
            fn_recursive_set_attention_slice(module, reversed_slice_size)

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(
        self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]
    ):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                if "temporal_transformer" not in sub_name:
                    fn_recursive_attn_processor(
                        f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            if "temporal_transformer" not in name:
                fn_recursive_attn_processor(name, module, processor)

    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
        audio_embedding: Optional[torch.Tensor] = None,
        class_labels: Optional[torch.Tensor] = None,
        mask_cond_fea: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        full_mask: Optional[torch.Tensor] = None,
        face_mask: Optional[torch.Tensor] = None,
        lip_mask: Optional[torch.Tensor] = None,
        motion_scale: Optional[torch.Tensor] = None,
        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        mid_block_additional_residual: Optional[torch.Tensor] = None,
        return_dict: bool = True,
        # start: bool = False,
    ) -> Union[UNet3DConditionOutput, Tuple]:
        r"""
        Args:
            sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
            timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
            encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.

        Returns:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
        """
        # By default samples have to be AT least a multiple of the overall upsampling factor.
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            logger.info(
                "Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

        # prepare attention_mask
        if attention_mask is not None:
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
            if isinstance(timestep, float):
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor(
                [timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timesteps = timesteps.expand(sample.shape[0])

        t_emb = self.time_proj(timesteps)

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=self.dtype)
        emb = self.time_embedding(t_emb)

        if self.class_embedding is not None:
            if class_labels is None:
                raise ValueError(
                    "class_labels should be provided when num_class_embeds > 0"
                )

            if self.config.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

            class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
            emb = emb + class_emb

        # pre-process
        sample = self.conv_in(sample)
        if mask_cond_fea is not None:
            sample = sample + mask_cond_fea

        # down
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
            if (
                hasattr(downsample_block, "has_cross_attention")
                and downsample_block.has_cross_attention
            ):
                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    full_mask=full_mask,
                    face_mask=face_mask,
                    lip_mask=lip_mask,
                    audio_embedding=audio_embedding,
                    motion_scale=motion_scale,
                )
                # print("")
            else:
                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
                    # audio_embedding=audio_embedding,
                )
                # print("")

            down_block_res_samples += res_samples

        if down_block_additional_residuals is not None:
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
                down_block_res_sample = (
                    down_block_res_sample + down_block_additional_residual
                )
                new_down_block_res_samples += (down_block_res_sample,)

            down_block_res_samples = new_down_block_res_samples

        # mid
        sample = self.mid_block(
            sample,
            emb,
            encoder_hidden_states=encoder_hidden_states,
            attention_mask=attention_mask,
            full_mask=full_mask,
            face_mask=face_mask,
            lip_mask=lip_mask,
            audio_embedding=audio_embedding,
            motion_scale=motion_scale,
        )

        if mid_block_additional_residual is not None:
            sample = sample + mid_block_additional_residual

        # up
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

            res_samples = down_block_res_samples[-len(upsample_block.resnets):]
            down_block_res_samples = down_block_res_samples[
                : -len(upsample_block.resnets)
            ]

            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

            if (
                hasattr(upsample_block, "has_cross_attention")
                and upsample_block.has_cross_attention
            ):
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
                    upsample_size=upsample_size,
                    attention_mask=attention_mask,
                    full_mask=full_mask,
                    face_mask=face_mask,
                    lip_mask=lip_mask,
                    audio_embedding=audio_embedding,
                    motion_scale=motion_scale,
                )
            else:
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    upsample_size=upsample_size,
                    encoder_hidden_states=encoder_hidden_states,
                    # audio_embedding=audio_embedding,
                )

        # post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        if not return_dict:
            return (sample,)

        return UNet3DConditionOutput(sample=sample)

    @classmethod
    def from_pretrained_2d(
        cls,
        pretrained_model_path: PathLike,
        motion_module_path: PathLike,
        subfolder=None,
        unet_additional_kwargs=None,
        mm_zero_proj_out=False,
        use_landmark=True,
    ):
        """
        Load a pre-trained 2D UNet model from a given directory.

        Parameters:
            pretrained_model_path (`str` or `PathLike`):
                Path to the directory containing a pre-trained 2D UNet model.
            dtype (`torch.dtype`, *optional*):
                The data type of the loaded model. If not provided, the default data type is used.
            device (`torch.device`, *optional*):
                The device on which the loaded model will be placed. If not provided, the default device is used.
            **kwargs (`Any`):
                Additional keyword arguments passed to the model.

        Returns:
            `UNet3DConditionModel`:
                The loaded 2D UNet model.
        """
        pretrained_model_path = Path(pretrained_model_path)
        motion_module_path = Path(motion_module_path)
        if subfolder is not None:
            pretrained_model_path = pretrained_model_path.joinpath(subfolder)
        logger.info(
            f"loaded temporal unet's pretrained weights from {pretrained_model_path} ..."
        )

        config_file = pretrained_model_path / "config.json"
        if not (config_file.exists() and config_file.is_file()):
            raise RuntimeError(
                f"{config_file} does not exist or is not a file")

        unet_config = cls.load_config(config_file)
        unet_config["_class_name"] = cls.__name__
        unet_config["down_block_types"] = [
            "CrossAttnDownBlock3D",
            "CrossAttnDownBlock3D",
            "CrossAttnDownBlock3D",
            "DownBlock3D",
        ]
        unet_config["up_block_types"] = [
            "UpBlock3D",
            "CrossAttnUpBlock3D",
            "CrossAttnUpBlock3D",
            "CrossAttnUpBlock3D",
        ]
        unet_config["mid_block_type"] = "UNetMidBlock3DCrossAttn"
        if use_landmark:
            unet_config["in_channels"] = 8
            unet_config["out_channels"] = 8

        model = cls.from_config(unet_config, **unet_additional_kwargs)
        # load the vanilla weights
        if pretrained_model_path.joinpath(SAFETENSORS_WEIGHTS_NAME).exists():
            logger.debug(
                f"loading safeTensors weights from {pretrained_model_path} ..."
            )
            state_dict = load_file(
                pretrained_model_path.joinpath(SAFETENSORS_WEIGHTS_NAME), device="cpu"
            )

        elif pretrained_model_path.joinpath(WEIGHTS_NAME).exists():
            logger.debug(f"loading weights from {pretrained_model_path} ...")
            state_dict = torch.load(
                pretrained_model_path.joinpath(WEIGHTS_NAME),
                map_location="cpu",
                weights_only=True,
            )
        else:
            raise FileNotFoundError(
                f"no weights file found in {pretrained_model_path}")

        # load the motion module weights
        if motion_module_path.exists() and motion_module_path.is_file():
            if motion_module_path.suffix.lower() in [".pth", ".pt", ".ckpt"]:
                print(
                    f"Load motion module params from {motion_module_path}")
                motion_state_dict = torch.load(
                    motion_module_path, map_location="cpu", weights_only=True
                )
            elif motion_module_path.suffix.lower() == ".safetensors":
                motion_state_dict = load_file(motion_module_path, device="cpu")
            else:
                raise RuntimeError(
                    f"unknown file format for motion module weights: {motion_module_path.suffix}"
                )
            if mm_zero_proj_out:
                logger.info(
                    "Zero initialize proj_out layers in motion module...")
                new_motion_state_dict = OrderedDict()
                for k in motion_state_dict:
                    if "proj_out" in k:
                        continue
                    new_motion_state_dict[k] = motion_state_dict[k]
                motion_state_dict = new_motion_state_dict

            # merge the state dicts
            state_dict.update(motion_state_dict)

        model_state_dict = model.state_dict()
        for k in state_dict:
            if k in model_state_dict:
                if state_dict[k].shape != model_state_dict[k].shape:
                    state_dict[k] = model_state_dict[k]
        # load the weights into the model
        m, u = model.load_state_dict(state_dict, strict=False)
        logger.debug(
            f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")

        params = [
            p.numel() if "temporal" in n else 0 for n, p in model.named_parameters()
        ]
        logger.info(f"Loaded {sum(params) / 1e6}M-parameter motion module")

        return model