File size: 12,843 Bytes
100edb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import streamlit as st
import torch
# from Pangu-Weather import *
import numpy as np
from datetime import datetime
import numpy as np
import onnx
import onnxruntime as ort
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import io
def fengwu_config_data():
st.subheader("FengWu Model Data Input")
# Detailed data description section
st.markdown("""
**Input Data Requirements (FengWu):**
FengWu takes **two consecutive six-hour atmospheric states** as input:
1. **First Input (input1.npy)**: Atmospheric data at the initial time.
2. **Second Input (input2.npy)**: Atmospheric data 6 hours later.
**Shape & Variables:**
Each input is a NumPy array with shape `(69, 721, 1440)`:
- **Dimension 0 (69 features):**
The first 4 features are surface variables:
1. U10 (10-meter Eastward Wind)
2. V10 (10-meter Northward Wind)
3. T2M (2-meter Temperature)
4. MSL (Mean Sea Level Pressure)
These are followed by non-surface variables, each with 13 pressure levels:
- Z (Geopotential)
- Q (Specific Humidity)
- U (Eastward Wind)
- V (Northward Wind)
- T (Temperature)
The 13 vertical levels are: [50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, 1000] hPa
The total count is:
- Surface vars: 4
- For each non-surface var (Z, Q, U, V, T): 13 levels = 65 vars
4 (surface) + 65 (5 vars * 13 levels) = 69 total features.
**Spatial & Coordinate Details:**
- Latitude dimension (721 points) ranges from 90°N to -90°S with ~0.25° spacing.
- Longitude dimension (1440 points) ranges from 0° to 360°E with ~0.25° spacing.
- Ensure data is single precision floats (`.astype(np.float32)`).
**Data Frequency & Forecasting Scheme:**
- `input1.npy` corresponds to a given time (e.g., 06:00 UTC Jan 1, 2018).
- `input2.npy` corresponds to 6 hours later (e.g., 12:00 UTC Jan 1, 2018).
- The model predicts future states at subsequent 6-hour intervals.
**Converting Your Data:**
- ERA5 `.nc` files or ECMWF `.grib` files can be converted to `.npy` using appropriate Python packages (`netCDF4` or `pygrib`).
- Ensure you follow the exact variable and level ordering as described.
""")
# File uploaders for FengWu input data (two consecutive time steps)
st.markdown("### Upload Your FengWu Input Data Files")
input1_file = st.file_uploader(
"Upload input1.npy (Initial Time)",
type=["npy"],
key="fengwu_input1"
)
input2_file = st.file_uploader(
"Upload input2.npy (6 Hours Later)",
type=["npy"],
key="fengwu_input2"
)
st.markdown("---")
st.markdown("### References & Resources")
st.markdown("""
- **Research Paper:** [FengWu: Pushing the Skillful Global Medium-range Weather Forecast beyond 10 Days Lead](https://arxiv.org/abs/2304.02948)
- **GitHub Source Code:** [Fengwu on GitHub](https://github.com/OpenEarthLab/FengWu?tab=readme-ov-file)
""")
return input1_file, input2_file
@st.cache_resource
def inference_6hrs_fengwu(input1, input2):
model_6 = onnx.load('FengWu/fengwu_v2.onnx')
# Set the behavier of onnxruntime
options = ort.SessionOptions()
options.enable_cpu_mem_arena=False
options.enable_mem_pattern = False
options.enable_mem_reuse = False
# Increase the number for faster inference and more memory consumption
options.intra_op_num_threads = 1
# Set the behavier of cuda provider
cuda_provider_options = {'arena_extend_strategy':'kSameAsRequested',}
# Initialize onnxruntime session for Pangu-Weather Models
ort_session_6 = ort.InferenceSession('FengWu/fengwu_v2.onnx', sess_options=options, providers=[('CUDAExecutionProvider', cuda_provider_options)])
data_mean = np.load("FengWu/data_mean.npy")[:, np.newaxis, np.newaxis]
data_std = np.load("FengWu/data_std.npy")[:, np.newaxis, np.newaxis]
input1_after_norm = (input1 - data_mean) / data_std
input2_after_norm = (input2 - data_mean) / data_std
input = np.concatenate((input1_after_norm, input2_after_norm), axis=0)[np.newaxis, :, :, :]
input = input.astype(np.float32)
output = ort_session_6.run(None, {'input':input})[0]
output = (output[0, :69] * data_std) + data_mean
return output
@st.cache_resource
def inference_12hrs_fengwu(input1, input2):
model_6 = onnx.load('FengWu/fengwu_v2.onnx')
# Set the behavier of onnxruntime
options = ort.SessionOptions()
options.enable_cpu_mem_arena=False
options.enable_mem_pattern = False
options.enable_mem_reuse = False
# Increase the number for faster inference and more memory consumption
options.intra_op_num_threads = 1
# Set the behavier of cuda provider
cuda_provider_options = {'arena_extend_strategy':'kSameAsRequested',}
# Initialize onnxruntime session for Pangu-Weather Models
ort_session_6 = ort.InferenceSession('FengWu/fengwu_v2.onnx', sess_options=options, providers=[('CUDAExecutionProvider', cuda_provider_options)])
data_mean = np.load("FengWu/data_mean.npy")[:, np.newaxis, np.newaxis]
data_std = np.load("FengWu/data_std.npy")[:, np.newaxis, np.newaxis]
input1_after_norm = (input1 - data_mean) / data_std
input2_after_norm = (input2 - data_mean) / data_std
input = np.concatenate((input1_after_norm, input2_after_norm), axis=0)[np.newaxis, :, :, :]
input = input.astype(np.float32)
for i in range(2):
output = ort_session_6.run(None, {'input':input})[0]
input = np.concatenate((input[:, 69:], output[:, :69]), axis=1)
output = (output[0, :69] * data_std) + data_mean
# print(output.shape)
return output
@st.cache_resource
def inference_custom_hrs_fengwu(input1, input2, forecast_hours):
model_6 = onnx.load('FengWu/fengwu_v2.onnx')
# Set the behavier of onnxruntime
options = ort.SessionOptions()
options.enable_cpu_mem_arena=False
options.enable_mem_pattern = False
options.enable_mem_reuse = False
# Increase the number for faster inference and more memory consumption
options.intra_op_num_threads = 1
# Set the behavier of cuda provider
cuda_provider_options = {'arena_extend_strategy':'kSameAsRequested',}
# Initialize onnxruntime session for Pangu-Weather Models
ort_session_6 = ort.InferenceSession('FengWu/fengwu_v2.onnx', sess_options=options, providers=[('CUDAExecutionProvider', cuda_provider_options)])
data_mean = np.load("FengWu/data_mean.npy")[:, np.newaxis, np.newaxis]
data_std = np.load("FengWu/data_std.npy")[:, np.newaxis, np.newaxis]
input1_after_norm = (input1 - data_mean) / data_std
input2_after_norm = (input2 - data_mean) / data_std
input = np.concatenate((input1_after_norm, input2_after_norm), axis=0)[np.newaxis, :, :, :]
input = input.astype(np.float32)
for i in range(forecast_hours/6):
output = ort_session_6.run(None, {'input':input})[0]
input = np.concatenate((input[:, 69:], output[:, :69]), axis=1)
output = (output[0, :69] * data_std) + data_mean
# print(output.shape)
return output
def plot_fengwu_output(initial_data, predicted_data):
"""
Plot initial and predicted Fengwu model outputs.
Parameters:
- initial_data: np.ndarray of shape (69, 721, 1440) representing the initial or input state.
- predicted_data: np.ndarray of shape (69, 721, 1440) representing the predicted state by Fengwu.
"""
# Coordinate setup
lat = np.linspace(90, -90, 721) # Latitude from 90N to 90S
lon = np.linspace(0, 360, 1440) # Longitude from 0E to 360E
# Surface and upper-level variable definitions
surface_vars = ["U10", "V10", "T2M", "MSL"]
upper_vars = ["Z (Geopotential)", "Q (Specific Humidity)", "U (Eastward Wind)", "V (Northward Wind)", "T (Temperature)"]
upper_levels = [50,100,150,200,250,300,400,500,600,700,850,925,1000]
# Mapping of upper variable groups to their starting indices
# Each group has 13 levels, so indices shift by 13 for each subsequent group.
var_group_start = {
"Z (Geopotential)": 4, # Z starts at index 4
"Q (Specific Humidity)": 17, # Q = 4+13=17
"U (Eastward Wind)": 30, # U = 17+13=30
"V (Northward Wind)": 43,# V = 30+13=43
"T (Temperature)": 56 # T = 43+13=56
}
# --- Initial Data Visualization ---
st.subheader("Initial Data Visualization (Fengwu)")
init_col1, init_col2 = st.columns([1,1])
with init_col1:
init_data_choice = st.selectbox("Data Source", ["Upper-Air Data", "Surface Data"], key="fengwu_init_data_choice")
with init_col2:
if init_data_choice == "Upper-Air Data":
init_var = st.selectbox("Variable", upper_vars, key="fengwu_init_upper_var")
else:
init_var = st.selectbox("Variable", surface_vars, key="fengwu_init_surface_var")
# Select the data slice for initial data
if init_data_choice == "Upper-Air Data":
selected_level_hpa_init = st.select_slider(
"Select Pressure Level (hPa)",
options=upper_levels,
value=850, # Default to 850hPa
help="Select the pressure level in hPa.",
key="fengwu_init_level_hpa_slider"
)
level_index_init = upper_levels.index(selected_level_hpa_init)
start_index_init = var_group_start[init_var]
data_index_init = start_index_init + level_index_init
data_to_plot_init = initial_data[data_index_init, :, :]
title_init = f"Initial Upper-Air: {init_var} at {selected_level_hpa_init}hPa"
else:
# Surface variable
var_index_init = surface_vars.index(init_var)
data_to_plot_init = initial_data[var_index_init, :, :]
title_init = f"Initial Surface: {init_var}"
# Plot initial data
fig_init, ax_init = plt.subplots(figsize=(10, 5), subplot_kw={'projection': ccrs.PlateCarree()})
ax_init.set_title(title_init)
im_init = ax_init.imshow(data_to_plot_init, extent=[lon.min(), lon.max(), lat.min(), lat.max()],
origin='lower', cmap='coolwarm', transform=ccrs.PlateCarree())
ax_init.coastlines()
plt.colorbar(im_init, ax=ax_init, orientation='horizontal', pad=0.05)
st.pyplot(fig_init)
# --- Predicted Data Visualization ---
st.subheader("Predicted Data Visualization (Fengwu)")
pred_col1, pred_col2 = st.columns([1,1])
with pred_col1:
pred_data_choice = st.selectbox("Data Source", ["Upper-Air Data", "Surface Data"], key="fengwu_pred_data_choice")
with pred_col2:
if pred_data_choice == "Upper-Air Data":
pred_var = st.selectbox("Variable", upper_vars, key="fengwu_pred_upper_var")
else:
pred_var = st.selectbox("Variable", surface_vars, key="fengwu_pred_surface_var")
# Select the data slice for predicted data
if pred_data_choice == "Upper-Air Data":
selected_level_hpa_pred = st.select_slider(
"Select Pressure Level (hPa)",
options=upper_levels,
value=850, # Default to 850hPa
help="Select the pressure level in hPa.",
key="fengwu_pred_level_hpa_slider"
)
level_index_pred = upper_levels.index(selected_level_hpa_pred)
start_index_pred = var_group_start[pred_var]
data_index_pred = start_index_pred + level_index_pred
data_to_plot_pred = predicted_data[data_index_pred, :, :]
title_pred = f"Predicted Upper-Air: {pred_var} at {selected_level_hpa_pred}hPa"
else:
# Surface variable for predicted data
var_index_pred = surface_vars.index(pred_var)
data_to_plot_pred = predicted_data[var_index_pred, :, :]
title_pred = f"Predicted Surface: {pred_var}"
# Plot predicted data
fig_pred, ax_pred = plt.subplots(figsize=(10, 5), subplot_kw={'projection': ccrs.PlateCarree()})
ax_pred.set_title(title_pred)
im_pred = ax_pred.imshow(data_to_plot_pred, extent=[lon.min(), lon.max(), lat.min(), lat.max()],
origin='lower', cmap='coolwarm', transform=ccrs.PlateCarree())
ax_pred.coastlines()
plt.colorbar(im_pred, ax=ax_pred, orientation='horizontal', pad=0.05)
st.pyplot(fig_pred)
# --- Download Buttons ---
st.subheader("Download Predicted Fengwu Data")
# Convert predicted_data to binary format for download
buffer_pred = io.BytesIO()
np.save(buffer_pred, predicted_data)
buffer_pred.seek(0)
st.download_button(label="Download Predicted Fengwu Data",
data=buffer_pred,
file_name="predicted_fengwu.npy",
mime="application/octet-stream") |