Spaces:
Sleeping
Sleeping
File size: 2,858 Bytes
47d06cd 6221f3e 47d06cd 6221f3e 47d06cd 6221f3e 47d06cd 6221f3e 47d06cd 6221f3e 47d06cd 6221f3e 47d06cd 6221f3e 47d06cd 6221f3e 47d06cd 6221f3e 47d06cd 6221f3e 47d06cd 6221f3e 47d06cd 6221f3e 47d06cd 6221f3e 47d06cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
"""
Milestone 2
Nama: Qothrunnadaa Alyaa
Batch: HCK-009
File ini digunakan untuk menjalankan model prediksi penggunaan kupon diskon
"""
import streamlit as st
import pandas as pd
import pickle
# Membuat function untuk dipanggil di app.py
def run():
st.title('Coupon Redemption Predictor')
# Memasukkan besaran diskon menggunakan kupon
coupon_discount = st.number_input(label='Discount from Coupon', min_value=0.00)
# Memasukkan lamanya periode promo
campaign_length = st.number_input(label='Promo Period (in Days)', min_value=0.00)
# Memasukkan tanggal transaksi
trx_day = st.number_input(label='Transaction Date', min_value=0.00)
# Memasukkan tanggal mulai periode promosi
start_day = st.number_input(label='Promotion Start Date', min_value=0.00)
# Memasukkan tanggal berakhir periode promosi
end_day = st.number_input(label='Promotion End Date', min_value=0.00)
# Memasukkan tipe brand
brand_type = st.selectbox(label='Brand Type', options=['Established','Local'])
# Daftar kategori barang
category_opt = ['Dairy, Juices & Snacks','Grocery','Seafood','Prepared Food','Packaged Meat','Meat',
'Pharmaceutical','Natural Products','Skin & Hair Care','Flowers & Plants','Garden',
'Travel','Miscellaneous','Bakery','Vegetables (cut)','Salads']
# Memasukkan kategori barang
category = st.selectbox(label='Item Category', options=category_opt)
# Memasukkan tipe campaign/promosi
campaign_type = st.selectbox(label='Campaign Type', options=['Y','X'])
# Daftar kelompok umur
age_option = ['18-25','26-35','36-45','46-55','56-70','70+']
# Memasukkan kelompok umur pelanggan
age_range = st.selectbox(label='Customer Age Range', options=age_option)
# Memasukkan tingkat pendapatan pelanggan
income_bracket = st.select_slider(label='Customer Income Bracket',options=[n for n in range(1,13)])
# Membuat data inference dari data yang dimasukkan
data_inf = pd.DataFrame({
'coupon_discount': coupon_discount,
'campaign_length': campaign_length,
'trx_day': trx_day,
'start_day': start_day,
'end_day': end_day,
'brand_type': brand_type,
'category': category,
'campaign_type': campaign_type,
'age_range': age_range,
'income_bracket': income_bracket
}, index=[0])
# Menampilkan data
st.header("Transaction Overview")
st.table(data_inf)
# Memprediksi apakah kupon akan digunakan atau tidak
if st.button(label='Predict'):
with open('model.pkl','rb') as model:
model = pickle.load(model)
y_pred_inf = model.predict(data_inf)
if y_pred_inf == 0:
st.write('Coupon was not redeemed.')
else:
st.write('Coupon was redeemed.') |