File size: 7,293 Bytes
dab2f85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import gradio as gr
import requests
import torch
import os
from tqdm import tqdm
# import wandb
from ultralytics import YOLO
import cv2
import numpy as np
import pandas as pd
from skimage.transform import resize
from skimage import img_as_bool
from skimage.morphology import convex_hull_image
import json

# wandb.init(mode='disabled')

def tableConvexHull(img, masks):
    mask=np.zeros(masks[0].shape,dtype="bool")
    for msk in masks:
        temp=msk.cpu().detach().numpy();
        chull = convex_hull_image(temp);
        mask=np.bitwise_or(mask,chull)
    return mask

def cls_exists(clss, cls):
    indices = torch.where(clss==cls)
    return len(indices[0])>0

def empty_mask(img):
    mask = np.zeros(img.shape[:2], dtype="uint8")
    return np.array(mask, dtype=bool)

def extract_img_mask(img_model, img, config):
    res_dict = {
        'status' : 1
    }
    res = get_predictions(img_model, img, config)
    
    if res['status']==-1:
        res_dict['status'] = -1
        
    elif res['status']==0:
        res_dict['mask']=empty_mask(img)
        
    else:
        masks = res['masks']
        boxes = res['boxes']
        clss = boxes[:, 5]
        mask = extract_mask(img, masks, boxes, clss, 0)
        res_dict['mask'] = mask
    return res_dict

def get_predictions(model, img2, config):
    res_dict = {
        'status': 1
    }
    try:
        for result in model.predict(source=img2, verbose=False, retina_masks=config['rm'],\
                                    imgsz=config['sz'], conf=config['conf'], stream=True,\
                                    classes=config['classes']):
            try:
                res_dict['masks'] = result.masks.data
                res_dict['boxes'] = result.boxes.data
                del result
                return res_dict
            except Exception as e:
                res_dict['status'] = 0
                return res_dict
    except:
        res_dict['status'] = -1
        return res_dict

def extract_mask(img, masks, boxes, clss, cls):
    if not cls_exists(clss, cls):
        return empty_mask(img)
    indices = torch.where(clss==cls)
    c_masks = masks[indices]
    mask_arr = torch.any(c_masks, dim=0).bool()
    mask_arr = mask_arr.cpu().detach().numpy()
    mask = mask_arr
    return mask


def get_masks(img, model, img_model, flags, configs):
    response = {
        'status': 1
    }
    ans_masks = []
    img2 = img
    
    
#     ***** Getting paragraph and text masks
    res = get_predictions(model, img2, configs['paratext'])
    if res['status']==-1:
        response['status'] = -1
        return response
    elif res['status']==0:
        for i in range(2): ans_masks.append(empty_mask(img))
    else:
        masks, boxes = res['masks'], res['boxes']
        clss = boxes[:, 5]
        for cls in range(2):
            mask = extract_mask(img, masks, boxes, clss, cls)
            ans_masks.append(mask)
            
            
#     ***** Getting image and table masks
    res2 = get_predictions(model, img2, configs['imgtab'])
    if res2['status']==-1:
        response['status'] = -1
        return response
    elif res2['status']==0:
        for i in range(2): ans_masks.append(empty_mask(img))
    else:
        masks, boxes = res2['masks'], res2['boxes']
        clss = boxes[:, 5]
        
        if cls_exists(clss, 2):
            img_res = extract_img_mask(img_model, img, configs['image'])
            if img_res['status'] == 1:
                img_mask = img_res['mask']
            else:
                response['status'] = -1
                return response
            
        else:
            img_mask = empty_mask(img)
        ans_masks.append(img_mask)
        
        if cls_exists(clss, 3):
            indices = torch.where(clss==3)
            tbl_mask = tableConvexHull(img, masks[indices])
        else:
            tbl_mask = empty_mask(img)
        ans_masks.append(tbl_mask)
    
    if not configs['paratext']['rm']:
        h, w, c = img.shape
        for i in range(4):
            ans_masks[i] = img_as_bool(resize(ans_masks[i], (h, w)))
            
    
    response['masks'] = ans_masks
    return response

def overlay(image, mask, color, alpha, resize=None):
    """Combines image and its segmentation mask into a single image.
    https://www.kaggle.com/code/purplejester/showing-samples-with-segmentation-mask-overlay

    Params:
        image: Training image. np.ndarray,
        mask: Segmentation mask. np.ndarray,
        color: Color for segmentation mask rendering.  tuple[int, int, int] = (255, 0, 0)
        alpha: Segmentation mask's transparency. float = 0.5,
        resize: If provided, both image and its mask are resized before blending them together.
        tuple[int, int] = (1024, 1024))

    Returns:
        image_combined: The combined image. np.ndarray

    """
    color = color[::-1]
    colored_mask = np.expand_dims(mask, 0).repeat(3, axis=0)
    colored_mask = np.moveaxis(colored_mask, 0, -1)
    masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=color)
    image_overlay = masked.filled()

    if resize is not None:
        image = cv2.resize(image.transpose(1, 2, 0), resize)
        image_overlay = cv2.resize(image_overlay.transpose(1, 2, 0), resize)

    image_combined = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0)

    return image_combined
     



general_model_path = 'e50_aug.pt'
image_model_path = 'e100_img.pt'

general_model = YOLO(general_model_path)
image_model = YOLO(image_model_path)

sample_path = ['0040da34-25c8-4a5a-a6aa-36733ea3b8eb.png']

flags = {
    'hist': False,
    'bz': False
}


configs = {}
configs['paratext'] = {
    'sz' : 640,
    'conf': 0.25,
    'rm': True,
    'classes': [0, 1]
}
configs['imgtab'] = {
    'sz' : 640,
    'conf': 0.35,
    'rm': True,
    'classes': [2, 3]
}
configs['image'] = {
    'sz' : 640,
    'conf': 0.35,
    'rm': True,
    'classes': [0]
}

def evaluate(img_path, model=general_model, img_model=image_model,\
          configs=configs, flags=flags):
    print('starting')
    img = cv2.imread(img_path)
    res = get_masks(img, general_model, image_model, flags, configs)
    if res['status']==-1:
        for idx in configs.keys():
            configs[idx]['rm'] = False
        return evaluate(img, model, img_model, flags, configs)
    else:
        masks = res['masks']
    
    color_map = {
        0 : (255, 0, 0),
        1 : (0, 255, 0),
        2 : (0, 0, 255),
        3 : (255, 255, 0),
    }
    for i, mask in enumerate(masks):
        img = overlay(image=img, mask=mask, color=color_map[i], alpha=0.4)
    print('finishing')
    return img

# output = evaluate(img_path=sample_path, model=general_model, img_model=image_model,\
#           configs=configs, flags=flags)


inputs_img = [
    gr.components.Video(type="filepath", label="Input Video"),
 
]
outputs_img = [
    gr.components.Image(type="numpy", label="Output Image"),
]

inputs_image = [
    gr.components.Image(type="filepath", label="Input Image"),
]
outputs_image = [
    gr.components.Image(type="numpy", label="Output Image"),
]
interface_image = gr.Interface(
    fn=evaluate,
    inputs=inputs_image,
    outputs=outputs_image,
    title="Document Layout Segmentor",
    examples=sample_path,
    cache_examples=True,
)