Spaces:
Runtime error
Runtime error
File size: 20,789 Bytes
db6a3b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
import torch
from .tables import *
from kaolin.utils.testing import check_tensor
__all__ = [
'FlexiCubes'
]
class FlexiCubes:
def __init__(self, device="cuda"):
self.device = device
self.dmc_table = torch.tensor(dmc_table, dtype=torch.long, device=device, requires_grad=False)
self.num_vd_table = torch.tensor(num_vd_table,
dtype=torch.long, device=device, requires_grad=False)
self.check_table = torch.tensor(
check_table,
dtype=torch.long, device=device, requires_grad=False)
self.tet_table = torch.tensor(tet_table, dtype=torch.long, device=device, requires_grad=False)
self.quad_split_1 = torch.tensor([0, 1, 2, 0, 2, 3], dtype=torch.long, device=device, requires_grad=False)
self.quad_split_2 = torch.tensor([0, 1, 3, 3, 1, 2], dtype=torch.long, device=device, requires_grad=False)
self.quad_split_train = torch.tensor(
[0, 1, 1, 2, 2, 3, 3, 0], dtype=torch.long, device=device, requires_grad=False)
self.cube_corners = torch.tensor([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [
1, 0, 1], [0, 1, 1], [1, 1, 1]], dtype=torch.float, device=device)
self.cube_corners_idx = torch.pow(2, torch.arange(8, requires_grad=False))
self.cube_edges = torch.tensor([0, 1, 1, 5, 4, 5, 0, 4, 2, 3, 3, 7, 6, 7, 2, 6,
2, 0, 3, 1, 7, 5, 6, 4], dtype=torch.long, device=device, requires_grad=False)
self.edge_dir_table = torch.tensor([0, 2, 0, 2, 0, 2, 0, 2, 1, 1, 1, 1],
dtype=torch.long, device=device)
self.dir_faces_table = torch.tensor([
[[5, 4], [3, 2], [4, 5], [2, 3]],
[[5, 4], [1, 0], [4, 5], [0, 1]],
[[3, 2], [1, 0], [2, 3], [0, 1]]
], dtype=torch.long, device=device)
self.adj_pairs = torch.tensor([0, 1, 1, 3, 3, 2, 2, 0], dtype=torch.long, device=device)
def __call__(self, voxelgrid_vertices, scalar_field, cube_idx, resolution, qef_reg_scale=1e-3,
weight_scale=0.99, beta=None, alpha=None, gamma_f=None, voxelgrid_colors=None, training=False):
assert torch.is_tensor(voxelgrid_vertices) and \
check_tensor(voxelgrid_vertices, (None, 3), throw=False), \
"'voxelgrid_vertices' should be a tensor of shape (num_vertices, 3)"
num_vertices = voxelgrid_vertices.shape[0]
assert torch.is_tensor(scalar_field) and \
check_tensor(scalar_field, (num_vertices,), throw=False), \
"'scalar_field' should be a tensor of shape (num_vertices,)"
assert torch.is_tensor(cube_idx) and \
check_tensor(cube_idx, (None, 8), throw=False), \
"'cube_idx' should be a tensor of shape (num_cubes, 8)"
num_cubes = cube_idx.shape[0]
assert beta is None or (
torch.is_tensor(beta) and
check_tensor(beta, (num_cubes, 12), throw=False)
), "'beta' should be a tensor of shape (num_cubes, 12)"
assert alpha is None or (
torch.is_tensor(alpha) and
check_tensor(alpha, (num_cubes, 8), throw=False)
), "'alpha' should be a tensor of shape (num_cubes, 8)"
assert gamma_f is None or (
torch.is_tensor(gamma_f) and
check_tensor(gamma_f, (num_cubes,), throw=False)
), "'gamma_f' should be a tensor of shape (num_cubes,)"
surf_cubes, occ_fx8 = self._identify_surf_cubes(scalar_field, cube_idx)
if surf_cubes.sum() == 0:
return (
torch.zeros((0, 3), device=self.device),
torch.zeros((0, 3), dtype=torch.long, device=self.device),
torch.zeros((0), device=self.device),
torch.zeros((0, voxelgrid_colors.shape[-1]), device=self.device) if voxelgrid_colors is not None else None
)
beta, alpha, gamma_f = self._normalize_weights(
beta, alpha, gamma_f, surf_cubes, weight_scale)
if voxelgrid_colors is not None:
voxelgrid_colors = torch.sigmoid(voxelgrid_colors)
case_ids = self._get_case_id(occ_fx8, surf_cubes, resolution)
surf_edges, idx_map, edge_counts, surf_edges_mask = self._identify_surf_edges(
scalar_field, cube_idx, surf_cubes
)
vd, L_dev, vd_gamma, vd_idx_map, vd_color = self._compute_vd(
voxelgrid_vertices, cube_idx[surf_cubes], surf_edges, scalar_field,
case_ids, beta, alpha, gamma_f, idx_map, qef_reg_scale, voxelgrid_colors)
vertices, faces, s_edges, edge_indices, vertices_color = self._triangulate(
scalar_field, surf_edges, vd, vd_gamma, edge_counts, idx_map,
vd_idx_map, surf_edges_mask, training, vd_color)
return vertices, faces, L_dev, vertices_color
def _compute_reg_loss(self, vd, ue, edge_group_to_vd, vd_num_edges):
"""
Regularizer L_dev as in Equation 8
"""
dist = torch.norm(ue - torch.index_select(input=vd, index=edge_group_to_vd, dim=0), dim=-1)
mean_l2 = torch.zeros_like(vd[:, 0])
mean_l2 = (mean_l2).index_add_(0, edge_group_to_vd, dist) / vd_num_edges.squeeze(1).float()
mad = (dist - torch.index_select(input=mean_l2, index=edge_group_to_vd, dim=0)).abs()
return mad
def _normalize_weights(self, beta, alpha, gamma_f, surf_cubes, weight_scale):
"""
Normalizes the given weights to be non-negative. If input weights are None, it creates and returns a set of weights of ones.
"""
n_cubes = surf_cubes.shape[0]
if beta is not None:
beta = (torch.tanh(beta) * weight_scale + 1)
else:
beta = torch.ones((n_cubes, 12), dtype=torch.float, device=self.device)
if alpha is not None:
alpha = (torch.tanh(alpha) * weight_scale + 1)
else:
alpha = torch.ones((n_cubes, 8), dtype=torch.float, device=self.device)
if gamma_f is not None:
gamma_f = torch.sigmoid(gamma_f) * weight_scale + (1 - weight_scale) / 2
else:
gamma_f = torch.ones((n_cubes), dtype=torch.float, device=self.device)
return beta[surf_cubes], alpha[surf_cubes], gamma_f[surf_cubes]
@torch.no_grad()
def _get_case_id(self, occ_fx8, surf_cubes, res):
"""
Obtains the ID of topology cases based on cell corner occupancy. This function resolves the
ambiguity in the Dual Marching Cubes (DMC) configurations as described in Section 1.3 of the
supplementary material. It should be noted that this function assumes a regular grid.
"""
case_ids = (occ_fx8[surf_cubes] * self.cube_corners_idx.to(self.device).unsqueeze(0)).sum(-1)
problem_config = self.check_table.to(self.device)[case_ids]
to_check = problem_config[..., 0] == 1
problem_config = problem_config[to_check]
if not isinstance(res, (list, tuple)):
res = [res, res, res]
# The 'problematic_configs' only contain configurations for surface cubes. Next, we construct a 3D array,
# 'problem_config_full', to store configurations for all cubes (with default config for non-surface cubes).
# This allows efficient checking on adjacent cubes.
problem_config_full = torch.zeros(list(res) + [5], device=self.device, dtype=torch.long)
vol_idx = torch.nonzero(problem_config_full[..., 0] == 0) # N, 3
vol_idx_problem = vol_idx[surf_cubes][to_check]
problem_config_full[vol_idx_problem[..., 0], vol_idx_problem[..., 1], vol_idx_problem[..., 2]] = problem_config
vol_idx_problem_adj = vol_idx_problem + problem_config[..., 1:4]
within_range = (
vol_idx_problem_adj[..., 0] >= 0) & (
vol_idx_problem_adj[..., 0] < res[0]) & (
vol_idx_problem_adj[..., 1] >= 0) & (
vol_idx_problem_adj[..., 1] < res[1]) & (
vol_idx_problem_adj[..., 2] >= 0) & (
vol_idx_problem_adj[..., 2] < res[2])
vol_idx_problem = vol_idx_problem[within_range]
vol_idx_problem_adj = vol_idx_problem_adj[within_range]
problem_config = problem_config[within_range]
problem_config_adj = problem_config_full[vol_idx_problem_adj[..., 0],
vol_idx_problem_adj[..., 1], vol_idx_problem_adj[..., 2]]
# If two cubes with cases C16 and C19 share an ambiguous face, both cases are inverted.
to_invert = (problem_config_adj[..., 0] == 1)
idx = torch.arange(case_ids.shape[0], device=self.device)[to_check][within_range][to_invert]
case_ids.index_put_((idx,), problem_config[to_invert][..., -1])
return case_ids
@torch.no_grad()
def _identify_surf_edges(self, scalar_field, cube_idx, surf_cubes):
"""
Identifies grid edges that intersect with the underlying surface by checking for opposite signs. As each edge
can be shared by multiple cubes, this function also assigns a unique index to each surface-intersecting edge
and marks the cube edges with this index.
"""
occ_n = scalar_field < 0
all_edges = cube_idx[surf_cubes][:, self.cube_edges].reshape(-1, 2)
unique_edges, _idx_map, counts = torch.unique(all_edges, dim=0, return_inverse=True, return_counts=True)
unique_edges = unique_edges.long()
mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1
surf_edges_mask = mask_edges[_idx_map]
counts = counts[_idx_map]
mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=cube_idx.device) * -1
mapping[mask_edges] = torch.arange(mask_edges.sum(), device=cube_idx.device)
# Shaped as [number of cubes x 12 edges per cube]. This is later used to map a cube edge to the unique index
# for a surface-intersecting edge. Non-surface-intersecting edges are marked with -1.
idx_map = mapping[_idx_map]
surf_edges = unique_edges[mask_edges]
return surf_edges, idx_map, counts, surf_edges_mask
@torch.no_grad()
def _identify_surf_cubes(self, scalar_field, cube_idx):
"""
Identifies grid cubes that intersect with the underlying surface by checking if the signs at
all corners are not identical.
"""
occ_n = scalar_field < 0
occ_fx8 = occ_n[cube_idx.reshape(-1)].reshape(-1, 8)
_occ_sum = torch.sum(occ_fx8, -1)
surf_cubes = (_occ_sum > 0) & (_occ_sum < 8)
return surf_cubes, occ_fx8
def _linear_interp(self, edges_weight, edges_x):
"""
Computes the location of zero-crossings on 'edges_x' using linear interpolation with 'edges_weight'.
"""
edge_dim = edges_weight.dim() - 2
assert edges_weight.shape[edge_dim] == 2
edges_weight = torch.cat([torch.index_select(input=edges_weight, index=torch.tensor(1, device=self.device), dim=edge_dim), -
torch.index_select(input=edges_weight, index=torch.tensor(0, device=self.device), dim=edge_dim)]
, edge_dim)
denominator = edges_weight.sum(edge_dim)
ue = (edges_x * edges_weight).sum(edge_dim) / denominator
return ue
def _solve_vd_QEF(self, p_bxnx3, norm_bxnx3, c_bx3, qef_reg_scale):
p_bxnx3 = p_bxnx3.reshape(-1, 7, 3)
norm_bxnx3 = norm_bxnx3.reshape(-1, 7, 3)
c_bx3 = c_bx3.reshape(-1, 3)
A = norm_bxnx3
B = ((p_bxnx3) * norm_bxnx3).sum(-1, keepdims=True)
A_reg = (torch.eye(3, device=p_bxnx3.device) * qef_reg_scale).unsqueeze(0).repeat(p_bxnx3.shape[0], 1, 1)
B_reg = (qef_reg_scale * c_bx3).unsqueeze(-1)
A = torch.cat([A, A_reg], 1)
B = torch.cat([B, B_reg], 1)
dual_verts = torch.linalg.lstsq(A, B).solution.squeeze(-1)
return dual_verts
def _compute_vd(self, voxelgrid_vertices, surf_cubes_fx8, surf_edges, scalar_field,
case_ids, beta, alpha, gamma_f, idx_map, qef_reg_scale, voxelgrid_colors):
"""
Computes the location of dual vertices as described in Section 4.2
"""
alpha_nx12x2 = torch.index_select(input=alpha, index=self.cube_edges, dim=1).reshape(-1, 12, 2)
surf_edges_x = torch.index_select(input=voxelgrid_vertices, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 3)
surf_edges_s = torch.index_select(input=scalar_field, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, 1)
zero_crossing = self._linear_interp(surf_edges_s, surf_edges_x)
if voxelgrid_colors is not None:
C = voxelgrid_colors.shape[-1]
surf_edges_c = torch.index_select(input=voxelgrid_colors, index=surf_edges.reshape(-1), dim=0).reshape(-1, 2, C)
idx_map = idx_map.reshape(-1, 12)
num_vd = torch.index_select(input=self.num_vd_table, index=case_ids, dim=0)
edge_group, edge_group_to_vd, edge_group_to_cube, vd_num_edges, vd_gamma = [], [], [], [], []
# if color is not None:
# vd_color = []
total_num_vd = 0
vd_idx_map = torch.zeros((case_ids.shape[0], 12), dtype=torch.long, device=self.device, requires_grad=False)
for num in torch.unique(num_vd):
cur_cubes = (num_vd == num) # consider cubes with the same numbers of vd emitted (for batching)
curr_num_vd = cur_cubes.sum() * num
curr_edge_group = self.dmc_table[case_ids[cur_cubes], :num].reshape(-1, num * 7)
curr_edge_group_to_vd = torch.arange(
curr_num_vd, device=self.device).unsqueeze(-1).repeat(1, 7) + total_num_vd
total_num_vd += curr_num_vd
curr_edge_group_to_cube = torch.arange(idx_map.shape[0], device=self.device)[
cur_cubes].unsqueeze(-1).repeat(1, num * 7).reshape_as(curr_edge_group)
curr_mask = (curr_edge_group != -1)
edge_group.append(torch.masked_select(curr_edge_group, curr_mask))
edge_group_to_vd.append(torch.masked_select(curr_edge_group_to_vd.reshape_as(curr_edge_group), curr_mask))
edge_group_to_cube.append(torch.masked_select(curr_edge_group_to_cube, curr_mask))
vd_num_edges.append(curr_mask.reshape(-1, 7).sum(-1, keepdims=True))
vd_gamma.append(torch.masked_select(gamma_f, cur_cubes).unsqueeze(-1).repeat(1, num).reshape(-1))
# if color is not None:
# vd_color.append(color[cur_cubes].unsqueeze(1).repeat(1, num, 1).reshape(-1, 3))
edge_group = torch.cat(edge_group)
edge_group_to_vd = torch.cat(edge_group_to_vd)
edge_group_to_cube = torch.cat(edge_group_to_cube)
vd_num_edges = torch.cat(vd_num_edges)
vd_gamma = torch.cat(vd_gamma)
# if color is not None:
# vd_color = torch.cat(vd_color)
# else:
# vd_color = None
vd = torch.zeros((total_num_vd, 3), device=self.device)
beta_sum = torch.zeros((total_num_vd, 1), device=self.device)
idx_group = torch.gather(input=idx_map.reshape(-1), dim=0, index=edge_group_to_cube * 12 + edge_group)
x_group = torch.index_select(input=surf_edges_x, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 3)
s_group = torch.index_select(input=surf_edges_s, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, 1)
zero_crossing_group = torch.index_select(
input=zero_crossing, index=idx_group.reshape(-1), dim=0).reshape(-1, 3)
alpha_group = torch.index_select(input=alpha_nx12x2.reshape(-1, 2), dim=0,
index=edge_group_to_cube * 12 + edge_group).reshape(-1, 2, 1)
ue_group = self._linear_interp(s_group * alpha_group, x_group)
beta_group = torch.gather(input=beta.reshape(-1), dim=0,
index=edge_group_to_cube * 12 + edge_group).reshape(-1, 1)
beta_sum = beta_sum.index_add_(0, index=edge_group_to_vd, source=beta_group)
vd = vd.index_add_(0, index=edge_group_to_vd, source=ue_group * beta_group) / beta_sum
'''
interpolate colors use the same method as dual vertices
'''
if voxelgrid_colors is not None:
vd_color = torch.zeros((total_num_vd, C), device=self.device)
c_group = torch.index_select(input=surf_edges_c, index=idx_group.reshape(-1), dim=0).reshape(-1, 2, C)
uc_group = self._linear_interp(s_group * alpha_group, c_group)
vd_color = vd_color.index_add_(0, index=edge_group_to_vd, source=uc_group * beta_group) / beta_sum
else:
vd_color = None
L_dev = self._compute_reg_loss(vd, zero_crossing_group, edge_group_to_vd, vd_num_edges)
v_idx = torch.arange(vd.shape[0], device=self.device) # + total_num_vd
vd_idx_map = (vd_idx_map.reshape(-1)).scatter(dim=0, index=edge_group_to_cube *
12 + edge_group, src=v_idx[edge_group_to_vd])
return vd, L_dev, vd_gamma, vd_idx_map, vd_color
def _triangulate(self, scalar_field, surf_edges, vd, vd_gamma, edge_counts, idx_map, vd_idx_map, surf_edges_mask, training, vd_color):
"""
Connects four neighboring dual vertices to form a quadrilateral. The quadrilaterals are then split into
triangles based on the gamma parameter, as described in Section 4.3.
"""
with torch.no_grad():
group_mask = (edge_counts == 4) & surf_edges_mask # surface edges shared by 4 cubes.
group = idx_map.reshape(-1)[group_mask]
vd_idx = vd_idx_map[group_mask]
edge_indices, indices = torch.sort(group, stable=True)
quad_vd_idx = vd_idx[indices].reshape(-1, 4)
# Ensure all face directions point towards the positive SDF to maintain consistent winding.
s_edges = scalar_field[surf_edges[edge_indices.reshape(-1, 4)[:, 0]].reshape(-1)].reshape(-1, 2)
flip_mask = s_edges[:, 0] > 0
quad_vd_idx = torch.cat((quad_vd_idx[flip_mask][:, [0, 1, 3, 2]],
quad_vd_idx[~flip_mask][:, [2, 3, 1, 0]]))
quad_gamma = torch.index_select(input=vd_gamma, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4)
gamma_02 = quad_gamma[:, 0] * quad_gamma[:, 2]
gamma_13 = quad_gamma[:, 1] * quad_gamma[:, 3]
if not training:
mask = (gamma_02 > gamma_13)
faces = torch.zeros((quad_gamma.shape[0], 6), dtype=torch.long, device=quad_vd_idx.device)
faces[mask] = quad_vd_idx[mask][:, self.quad_split_1]
faces[~mask] = quad_vd_idx[~mask][:, self.quad_split_2]
faces = faces.reshape(-1, 3)
else:
vd_quad = torch.index_select(input=vd, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, 3)
vd_02 = (vd_quad[:, 0] + vd_quad[:, 2]) / 2
vd_13 = (vd_quad[:, 1] + vd_quad[:, 3]) / 2
weight_sum = (gamma_02 + gamma_13) + 1e-8
vd_center = (vd_02 * gamma_02.unsqueeze(-1) + vd_13 * gamma_13.unsqueeze(-1)) / weight_sum.unsqueeze(-1)
if vd_color is not None:
color_quad = torch.index_select(input=vd_color, index=quad_vd_idx.reshape(-1), dim=0).reshape(-1, 4, vd_color.shape[-1])
color_02 = (color_quad[:, 0] + color_quad[:, 2]) / 2
color_13 = (color_quad[:, 1] + color_quad[:, 3]) / 2
color_center = (color_02 * gamma_02.unsqueeze(-1) + color_13 * gamma_13.unsqueeze(-1)) / weight_sum.unsqueeze(-1)
vd_color = torch.cat([vd_color, color_center])
vd_center_idx = torch.arange(vd_center.shape[0], device=self.device) + vd.shape[0]
vd = torch.cat([vd, vd_center])
faces = quad_vd_idx[:, self.quad_split_train].reshape(-1, 4, 2)
faces = torch.cat([faces, vd_center_idx.reshape(-1, 1, 1).repeat(1, 4, 1)], -1).reshape(-1, 3)
return vd, faces, s_edges, edge_indices, vd_color
|