Spaces:
qiuzhi2046
/
Runtime error

File size: 28,957 Bytes
9eb3654
 
 
 
972091b
9eb3654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
972091b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eb3654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
import os
import logging
from collections import OrderedDict
import math
import warnings
from typing import Callable, Optional, Sequence
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F

from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast
from .utils import to_2tuple

if os.getenv('ENV_TYPE') == 'deepspeed':
    try:
        import deepspeed
        from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
    except:
        print("Please 'pip install deepspeed'")
        deepspeed = None
        from torch.utils.checkpoint import checkpoint
else:
    from torch.utils.checkpoint import checkpoint

try:
    import xformers.ops as xops
except ImportError:
    xops = None
    print("Please 'pip install xformers'")


def _no_grad_trunc_normal_(tensor, mean, std, a, b):
    # Cut & paste from PyTorch official master until it's in a few official releases - RW
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1. + math.erf(x / math.sqrt(2.))) / 2.

    if (mean < a - 2 * std) or (mean > b + 2 * std):
        warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
                      "The distribution of values may be incorrect.",
                      stacklevel=2)

    with torch.no_grad():
        # Values are generated by using a truncated uniform distribution and
        # then using the inverse CDF for the normal distribution.
        # Get upper and lower cdf values
        l = norm_cdf((a - mean) / std)
        u = norm_cdf((b - mean) / std)

        # Uniformly fill tensor with values from [l, u], then translate to
        # [2l-1, 2u-1].
        tensor.uniform_(2 * l - 1, 2 * u - 1)

        # Use inverse cdf transform for normal distribution to get truncated
        # standard normal
        tensor.erfinv_()

        # Transform to proper mean, std
        tensor.mul_(std * math.sqrt(2.))
        tensor.add_(mean)

        # Clamp to ensure it's in the proper range
        tensor.clamp_(min=a, max=b)
        return tensor


def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
    # type: (Tensor, float, float, float, float) -> Tensor
    r"""Fills the input Tensor with values drawn from a truncated
    normal distribution. The values are effectively drawn from the
    normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
    with values outside :math:`[a, b]` redrawn until they are within
    the bounds. The method used for generating the random values works
    best when :math:`a \leq \text{mean} \leq b`.
    Args:
        tensor: an n-dimensional `torch.Tensor`
        mean: the mean of the normal distribution
        std: the standard deviation of the normal distribution
        a: the minimum cutoff value
        b: the maximum cutoff value
    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.trunc_normal_(w)
    """
    return _no_grad_trunc_normal_(tensor, mean, std, a, b)



class LayerNormFp32(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back)."""
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    def forward(self, x: torch.Tensor):
        output = F.layer_norm(
            x.float(),
            self.normalized_shape,
            self.weight.float() if self.weight is not None else None,
            self.bias.float() if self.bias is not None else None,
            self.eps,
        )
        return output.type_as(x)


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm (with cast back to input dtype)."""

    def forward(self, x: torch.Tensor):
        orig_type = x.dtype
        x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        return x.to(orig_type)

class QuickGELU(nn.Module):
    # NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory
    def forward(self, x: torch.Tensor):
        return x * torch.sigmoid(1.702 * x)


class LayerScale(nn.Module):
    def __init__(self, dim, init_values=1e-5, inplace=False):
        super().__init__()
        self.inplace = inplace
        self.gamma = nn.Parameter(init_values * torch.ones(dim))

    def forward(self, x):
        return x.mul_(self.gamma) if self.inplace else x * self.gamma

class PatchDropout(nn.Module):
    """
    https://arxiv.org/abs/2212.00794
    """

    def __init__(self, prob, exclude_first_token=True):
        super().__init__()
        assert 0 <= prob < 1.
        self.prob = prob
        self.exclude_first_token = exclude_first_token  # exclude CLS token
        logging.info(f"os.getenv('RoPE')={os.getenv('RoPE')}")

    def forward(self, x):
        if not self.training or self.prob == 0.:
            return x

        if self.exclude_first_token:
            cls_tokens, x = x[:, :1], x[:, 1:]
        else:
            cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])

        batch = x.size()[0]
        num_tokens = x.size()[1]

        batch_indices = torch.arange(batch)
        batch_indices = batch_indices[..., None]

        keep_prob = 1 - self.prob
        num_patches_keep = max(1, int(num_tokens * keep_prob))

        rand = torch.randn(batch, num_tokens)
        patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices

        x = x[batch_indices, patch_indices_keep]

        if self.exclude_first_token:
            x = torch.cat((cls_tokens, x), dim=1)

        if self.training and os.getenv('RoPE') == '1':
            return x, patch_indices_keep

        return x


def _in_projection_packed(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    w: torch.Tensor,
    b: Optional[torch.Tensor] = None,
    ):
    """
    https://github.com/pytorch/pytorch/blob/db2a237763eb8693a20788be94f8c192e762baa8/torch/nn/functional.py#L4726
    """
    E = q.size(-1)
    if k is v:
        if q is k:
            # self-attention
            return F.linear(q, w, b).chunk(3, dim=-1)
        else:
            # encoder-decoder attention
            w_q, w_kv = w.split([E, E * 2])
            if b is None:
                b_q = b_kv = None
            else:
                b_q, b_kv = b.split([E, E * 2])
            return (F.linear(q, w_q, b_q),) + F.linear(k, w_kv, b_kv).chunk(2, dim=-1)
    else:
        w_q, w_k, w_v = w.chunk(3)
        if b is None:
            b_q = b_k = b_v = None
        else:
            b_q, b_k, b_v = b.chunk(3)
        return F.linear(q, w_q, b_q), F.linear(k, w_k, b_k), F.linear(v, w_v, b_v)

class Attention(nn.Module):
    def __init__(
            self,
            dim,
            num_heads=8,
            qkv_bias=True,
            scaled_cosine=False,
            scale_heads=False,
            logit_scale_max=math.log(1. / 0.01),
            attn_drop=0.,
            proj_drop=0.,
            xattn=False,
            rope=False
    ):
        super().__init__()
        self.scaled_cosine = scaled_cosine
        self.scale_heads = scale_heads
        assert dim % num_heads == 0, 'dim should be divisible by num_heads'
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim ** -0.5
        self.logit_scale_max = logit_scale_max

        # keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original
        self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale)
        if qkv_bias:
            self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3))
        else:
            self.in_proj_bias = None

        if self.scaled_cosine:
            self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
        else:
            self.logit_scale = None
        self.attn_drop = nn.Dropout(attn_drop)
        if self.scale_heads:
            self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1)))
        else:
            self.head_scale = None
        self.out_proj = nn.Linear(dim, dim)
        self.out_drop = nn.Dropout(proj_drop)
        self.xattn = xattn
        self.xattn_drop = attn_drop
        self.rope = rope

    def forward(self, x, attn_mask: Optional[torch.Tensor] = None):
        L, N, C = x.shape
        q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1)
        if self.xattn:
            q = q.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1)
            k = k.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1)
            v = v.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1)

            x = xops.memory_efficient_attention(
                q, k, v,
                p=self.xattn_drop,
                scale=self.scale if self.logit_scale is None else None,
                attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None,
                )
        else:
            q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
            k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)
            v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1)

            if self.logit_scale is not None:
                attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2))
                logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
                attn = attn.view(N, self.num_heads, L, L) * logit_scale
                attn = attn.view(-1, L, L)
            else:
                q = q * self.scale
                attn = torch.bmm(q, k.transpose(-1, -2))

            if attn_mask is not None:
                if attn_mask.dtype == torch.bool:
                    new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
                    new_attn_mask.masked_fill_(attn_mask, float("-inf"))
                    attn_mask = new_attn_mask
                attn += attn_mask

            attn = attn.softmax(dim=-1)
            attn = self.attn_drop(attn)

            x = torch.bmm(attn, v)

        if self.head_scale is not None:
            x = x.view(N, self.num_heads, L, C) * self.head_scale
            x = x.view(-1, L, C)
        x = x.transpose(0, 1).reshape(L, N, C)
        x = self.out_proj(x)
        x = self.out_drop(x)
        return x

class CustomAttention(nn.Module):
    def __init__(
            self,
            dim,
            num_heads=8,
            qkv_bias=True,
            scaled_cosine=True,
            scale_heads=False,
            logit_scale_max=math.log(1. / 0.01),
            attn_drop=0.,
            proj_drop=0.,
            xattn=False
    ):
        super().__init__()
        self.scaled_cosine = scaled_cosine
        self.scale_heads = scale_heads
        assert dim % num_heads == 0, 'dim should be divisible by num_heads'
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim ** -0.5
        self.logit_scale_max = logit_scale_max

        # keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original
        self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale)
        if qkv_bias:
            self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3))
        else:
            self.in_proj_bias = None

        if self.scaled_cosine:
            self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))
        else:
            self.logit_scale = None
        self.attn_drop = nn.Dropout(attn_drop)
        if self.scale_heads:
            self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1)))
        else:
            self.head_scale = None
        self.out_proj = nn.Linear(dim, dim)
        self.out_drop = nn.Dropout(proj_drop)
        self.xattn = xattn
        self.xattn_drop = attn_drop

    def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
        q, k, v = _in_projection_packed(query, key, value, self.in_proj_weight, self.in_proj_bias)
        N_q, B_q, C_q = q.shape
        N_k, B_k, C_k = k.shape
        N_v, B_v, C_v = v.shape
        if self.xattn:
            # B, N, C -> B, N, num_heads, C
            q = q.permute(1, 0, 2).reshape(B_q, N_q, self.num_heads, -1)
            k = k.permute(1, 0, 2).reshape(B_k, N_k, self.num_heads, -1)
            v = v.permute(1, 0, 2).reshape(B_v, N_v, self.num_heads, -1)

            x = xops.memory_efficient_attention(
                q, k, v,
                p=self.xattn_drop,
                scale=self.scale if self.logit_scale is None else None,
                attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None
                )
        else:
            # B*H, L, C
            q = q.contiguous().view(N_q, B_q * self.num_heads, -1).transpose(0, 1)
            k = k.contiguous().view(N_k, B_k * self.num_heads, -1).transpose(0, 1)
            v = v.contiguous().view(N_v, B_v * self.num_heads, -1).transpose(0, 1)

            if self.logit_scale is not None:
                # B*H, N_q, N_k
                attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2))
                logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp()
                attn = attn.view(B_q, self.num_heads, N_q, N_k) * logit_scale
                attn = attn.view(-1, N_q, N_k)
            else:
                q = q * self.scale
                attn = torch.bmm(q, k.transpose(-1, -2))

            if attn_mask is not None:
                if attn_mask.dtype == torch.bool:
                    new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype)
                    new_attn_mask.masked_fill_(attn_mask, float("-inf"))
                    attn_mask = new_attn_mask
                attn += attn_mask

            attn = attn.softmax(dim=-1)
            attn = self.attn_drop(attn)

            x = torch.bmm(attn, v)
            
        if self.head_scale is not None:
            x = x.view(B_q, self.num_heads, N_q, C_q) * self.head_scale
            x = x.view(-1, N_q, C_q)
        x = x.transpose(0, 1).reshape(N_q, B_q, C_q)
        x = self.out_proj(x)
        x = self.out_drop(x)
        return x

class CustomResidualAttentionBlock(nn.Module):
    def __init__(
            self,
            d_model: int,
            n_head: int,
            mlp_ratio: float = 4.0,
            ls_init_value: float = None,
            act_layer: Callable = nn.GELU,
            norm_layer: Callable = LayerNorm,
            scale_cosine_attn: bool = False,
            scale_heads: bool = False,
            scale_attn: bool = False,
            scale_fc: bool = False,
            cross_attn: bool = False,
            xattn: bool = False,
    ):
        super().__init__()

        self.ln_1 = norm_layer(d_model)
        self.ln_1_k = norm_layer(d_model) if cross_attn else self.ln_1
        self.ln_1_v = norm_layer(d_model) if cross_attn else self.ln_1
        self.attn = CustomAttention(
            d_model, n_head,
            qkv_bias=True,
            attn_drop=0.,
            proj_drop=0.,
            scaled_cosine=scale_cosine_attn,
            scale_heads=scale_heads,
            xattn=xattn
        )

        self.ln_attn = norm_layer(d_model) if scale_attn else nn.Identity()
        self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()

        self.ln_2 = norm_layer(d_model)
        mlp_width = int(d_model * mlp_ratio)
        self.mlp = nn.Sequential(OrderedDict([
            ("c_fc", nn.Linear(d_model, mlp_width)),
            ('ln', norm_layer(mlp_width) if scale_fc else nn.Identity()),
            ("gelu", act_layer()),
            ("c_proj", nn.Linear(mlp_width, d_model))
        ]))

        self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()

    def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
        q = q + self.ls_1(self.ln_attn(self.attn(self.ln_1(q), self.ln_1_k(k), self.ln_1_v(v), attn_mask=attn_mask)))
        q = q + self.ls_2(self.mlp(self.ln_2(q)))
        return q

class CustomTransformer(nn.Module):
    def __init__(
            self,
            width: int,
            layers: int,
            heads: int,
            mlp_ratio: float = 4.0,
            ls_init_value: float = None,
            act_layer: Callable = nn.GELU,
            norm_layer: Callable = LayerNorm,
            scale_cosine_attn: bool = True,
            scale_heads: bool = False,
            scale_attn: bool = False,
            scale_fc: bool = False,
            cross_attn: bool = False,
            xattn: bool = False,
    ):
        super().__init__()
        self.width = width
        self.layers = layers
        self.grad_checkpointing = False
        self.xattn = xattn

        self.resblocks = nn.ModuleList([
            CustomResidualAttentionBlock(
                width,
                heads,
                mlp_ratio,
                ls_init_value=ls_init_value,
                act_layer=act_layer,
                norm_layer=norm_layer,
                scale_cosine_attn=scale_cosine_attn,
                scale_heads=scale_heads,
                scale_attn=scale_attn,
                scale_fc=scale_fc,
                cross_attn=cross_attn,
                xattn=xattn)
            for _ in range(layers)
        ])

    def get_cast_dtype(self) -> torch.dtype:
        return self.resblocks[0].mlp.c_fc.weight.dtype 

    def forward(self, q: torch.Tensor, k: torch.Tensor = None, v: torch.Tensor = None, attn_mask: Optional[torch.Tensor] = None):
        if k is None and v is None:
            k = v = q
        for r in self.resblocks:
            if self.grad_checkpointing and not torch.jit.is_scripting():
                q = checkpoint(r, q, k, v, attn_mask)
            else:
                q = r(q, k, v, attn_mask=attn_mask)
        return q


class ResidualAttentionBlock(nn.Module):
    def __init__(
            self,
            d_model: int,
            n_head: int,
            mlp_ratio: float = 4.0,
            ls_init_value: float = None,
            act_layer: Callable = nn.GELU,
            norm_layer: Callable = LayerNorm,
            xattn: bool = False,
    ):
        super().__init__()

        self.ln_1 = norm_layer(d_model)
        if xattn:
            self.attn = Attention(d_model, n_head, xattn=True)
        else:
            self.attn = nn.MultiheadAttention(d_model, n_head)
        self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()

        self.ln_2 = norm_layer(d_model)
        mlp_width = int(d_model * mlp_ratio)
        self.mlp = nn.Sequential(OrderedDict([
            ("c_fc", nn.Linear(d_model, mlp_width)),
            ("gelu", act_layer()),
            ("c_proj", nn.Linear(mlp_width, d_model))
        ]))

        self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
        self.xattn = xattn

    def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
        attn_mask = attn_mask.to(x.dtype) if attn_mask is not None else None
        if self.xattn:
            return self.attn(x, attn_mask=attn_mask)
        return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0]

    def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
        x = x + self.ls_1(self.attention(self.ln_1(x), attn_mask=attn_mask))
        x = x + self.ls_2(self.mlp(self.ln_2(x)))
        return x

class Transformer(nn.Module):
    def __init__(
            self,
            width: int,
            layers: int,
            heads: int,
            mlp_ratio: float = 4.0,
            ls_init_value: float = None,
            act_layer: Callable = nn.GELU,
            norm_layer: Callable = LayerNorm,
            xattn: bool = False,
    ):
        super().__init__()
        self.width = width
        self.layers = layers
        self.grad_checkpointing = False

        self.resblocks = nn.ModuleList([
            ResidualAttentionBlock(
                width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, xattn=xattn)
            for _ in range(layers)
        ])

    def get_cast_dtype(self) -> torch.dtype:
        return self.resblocks[0].mlp.c_fc.weight.dtype

    def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
        for r in self.resblocks:
            if self.grad_checkpointing and not torch.jit.is_scripting():
                x = checkpoint(r, x, attn_mask)
            else:
                x = r(x, attn_mask=attn_mask)
        return x


class VisionTransformer(nn.Module):
    def __init__(
            self,
            image_size: int,
            patch_size: int,
            width: int,
            layers: int,
            heads: int,
            mlp_ratio: float,
            ls_init_value: float = None,
            patch_dropout: float = 0.,
            global_average_pool: bool = False,
            output_dim: int = 512,
            act_layer: Callable = nn.GELU,
            norm_layer: Callable = LayerNorm,
            xattn: bool = False,
    ):
        super().__init__()
        self.image_size = to_2tuple(image_size)
        self.patch_size = to_2tuple(patch_size)
        self.grid_size = (self.image_size[0] // self.patch_size[0], self.image_size[1] // self.patch_size[1])
        self.output_dim = output_dim
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)

        scale = width ** -0.5
        self.class_embedding = nn.Parameter(scale * torch.randn(width))
        self.positional_embedding = nn.Parameter(scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width))

        # setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn
        self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity()
        self.ln_pre = norm_layer(width)
        
        self.transformer = Transformer(
            width,
            layers,
            heads,
            mlp_ratio,
            ls_init_value=ls_init_value,
            act_layer=act_layer,
            norm_layer=norm_layer,
            xattn=xattn
        )

        self.global_average_pool = global_average_pool
        self.ln_post = norm_layer(width)
        self.proj = nn.Parameter(scale * torch.randn(width, output_dim))

    def lock(self, unlocked_groups=0, freeze_bn_stats=False):
        for param in self.parameters():
            param.requires_grad = False
        
        if unlocked_groups != 0:
            groups = [
                [
                    self.conv1,
                    self.class_embedding,
                    self.positional_embedding,
                    self.ln_pre,
                ],
                *self.transformer.resblocks[:-1],
                [
                    self.transformer.resblocks[-1],
                    self.ln_post,
                ],
                self.proj,
            ]

            def _unlock(x):
                if isinstance(x, Sequence):
                    for g in x:
                        _unlock(g)
                else:
                    if isinstance(x, torch.nn.Parameter):
                        x.requires_grad = True
                    else:
                        for p in x.parameters():
                            p.requires_grad = True

            _unlock(groups[-unlocked_groups:])

    def get_num_layers(self):
        return self.transformer.layers

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.transformer.grad_checkpointing = enable

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'positional_embedding', 'class_embedding'}

    def forward(self, x: torch.Tensor, return_all_features: bool=False):
        x = self.conv1(x)  # shape = [*, width, grid, grid]
        x = x.reshape(x.shape[0], x.shape[1], -1)  # shape = [*, width, grid ** 2]
        x = x.permute(0, 2, 1)  # shape = [*, grid ** 2, width]
        x = torch.cat(
            [self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
             x], dim=1)  # shape = [*, grid ** 2 + 1, width]
        x = x + self.positional_embedding.to(x.dtype)

        # a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
        x = self.patch_dropout(x)
        x = self.ln_pre(x)

        x = x.permute(1, 0, 2)  # NLD -> LND
        x = self.transformer(x)
        x = x.permute(1, 0, 2)  # LND -> NLD

        if not return_all_features:
            if self.global_average_pool:
                x = x.mean(dim=1) #x = x[:,1:,:].mean(dim=1)
            else:
                x = x[:, 0]

            x = self.ln_post(x)

            if self.proj is not None:
                x = x @ self.proj

        return x


class TextTransformer(nn.Module):
    def __init__(
            self,
            context_length: int = 77,
            vocab_size: int = 49408,
            width: int = 512,
            heads: int = 8,
            layers: int = 12,
            ls_init_value: float = None,
            output_dim: int = 512,
            act_layer: Callable = nn.GELU,
            norm_layer: Callable = LayerNorm,
            xattn: bool= False,
            attn_mask: bool = True
    ):
        super().__init__()
        self.context_length = context_length
        self.vocab_size = vocab_size
        self.width = width
        self.output_dim = output_dim

        self.token_embedding = nn.Embedding(vocab_size, width)
        self.positional_embedding = nn.Parameter(torch.empty(self.context_length, width))
        self.transformer = Transformer(
            width=width,
            layers=layers,
            heads=heads,
            ls_init_value=ls_init_value,
            act_layer=act_layer,
            norm_layer=norm_layer,
            xattn=xattn
        )
        
        self.xattn = xattn
        self.ln_final = norm_layer(width)
        self.text_projection = nn.Parameter(torch.empty(width, output_dim))

        if attn_mask:
            self.register_buffer('attn_mask', self.build_attention_mask(), persistent=False)
        else:
            self.attn_mask = None

        self.init_parameters()

    def init_parameters(self):
        nn.init.normal_(self.token_embedding.weight, std=0.02)
        nn.init.normal_(self.positional_embedding, std=0.01)

        proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
        attn_std = self.transformer.width ** -0.5
        fc_std = (2 * self.transformer.width) ** -0.5
        for block in self.transformer.resblocks:
            nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
            nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
            nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
            nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)

        if self.text_projection is not None:
            nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.transformer.grad_checkpointing = enable
    
    @torch.jit.ignore
    def no_weight_decay(self):
        # return {'positional_embedding', 'token_embedding'}
        return {'positional_embedding'}

    def get_num_layers(self):
        return self.transformer.layers

    def build_attention_mask(self):
        # lazily create causal attention mask, with full attention between the vision tokens
        # pytorch uses additive attention mask; fill with -inf
        mask = torch.empty(self.context_length, self.context_length)
        mask.fill_(float("-inf"))
        mask.triu_(1)  # zero out the lower diagonal
        return mask

    def forward(self, text, return_all_features: bool=False):
        cast_dtype = self.transformer.get_cast_dtype()
        x = self.token_embedding(text).to(cast_dtype)  # [batch_size, n_ctx, d_model]

        x = x + self.positional_embedding.to(cast_dtype)
        x = x.permute(1, 0, 2)  # NLD -> LND
        x = self.transformer(x, attn_mask=self.attn_mask)
        # x = self.transformer(x) # no attention mask is applied
        x = x.permute(1, 0, 2)  # LND -> NLD
        x = self.ln_final(x)

        if not return_all_features:
            # x.shape = [batch_size, n_ctx, transformer.width]
            # take features from the eot embedding (eot_token is the highest number in each sequence)
            x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
        return x