Spaces:
Running
on
T4
Running
on
T4
File size: 38,849 Bytes
4562a06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 |
"""
Configurations can be overwritten by adding: key=value
Use debug.wandb=False to disable logging to wandb.
"""
import datetime
from datetime import timedelta
import os
import random
import socket
import time
from glob import glob
import hydra
import ipdb # noqa: F401
import numpy as np
import omegaconf
import torch
import wandb
from accelerate import Accelerator, DistributedDataParallelKwargs, InitProcessGroupKwargs
from pytorch3d.renderer import PerspectiveCameras
from diffusionsfm.dataset.co3d_v2 import Co3dDataset, unnormalize_image_for_vis
# from diffusionsfm.dataset.multiloader import get_multiloader, MultiDataset
from diffusionsfm.eval.eval_category import evaluate
from diffusionsfm.model.diffuser import RayDiffuser
from diffusionsfm.model.diffuser_dpt import RayDiffuserDPT
from diffusionsfm.model.scheduler import NoiseScheduler
from diffusionsfm.utils.rays import cameras_to_rays, normalize_cameras_batch, compute_ndc_coordinates
from diffusionsfm.utils.visualization import (
create_training_visualizations,
view_color_coded_images_from_tensor,
)
os.umask(000) # Default to 777 permissions
class Trainer(object):
def __init__(self, cfg):
seed = cfg.training.seed
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
self.cfg = cfg
self.debug = cfg.debug
self.resume = cfg.training.resume
self.pretrain_path = cfg.training.pretrain_path
self.batch_size = cfg.training.batch_size
self.max_iterations = cfg.training.max_iterations
self.mixed_precision = cfg.training.mixed_precision
self.interval_visualize = cfg.training.interval_visualize
self.interval_save_checkpoint = cfg.training.interval_save_checkpoint
self.interval_delete_checkpoint = cfg.training.interval_delete_checkpoint
self.interval_evaluate = cfg.training.interval_evaluate
self.delete_all = cfg.training.delete_all_checkpoints_after_training
self.freeze_encoder = cfg.training.freeze_encoder
self.translation_scale = cfg.training.translation_scale
self.regression = cfg.training.regression
self.prob_unconditional = cfg.training.prob_unconditional
self.load_extra_cameras = cfg.training.load_extra_cameras
self.calculate_intrinsics = cfg.training.calculate_intrinsics
self.distort = cfg.training.distort
self.diffuse_origins_and_endpoints = cfg.training.diffuse_origins_and_endpoints
self.diffuse_depths = cfg.training.diffuse_depths
self.depth_resolution = cfg.training.depth_resolution
self.dpt_head = cfg.training.dpt_head
self.full_num_patches_x = cfg.training.full_num_patches_x
self.full_num_patches_y = cfg.training.full_num_patches_y
self.dpt_encoder_features = cfg.training.dpt_encoder_features
self.nearest_neighbor = cfg.training.nearest_neighbor
self.no_bg_targets = cfg.training.no_bg_targets
self.unit_normalize_scene = cfg.training.unit_normalize_scene
self.sd_scale = cfg.training.sd_scale
self.bfloat = cfg.training.bfloat
self.first_cam_mediod = cfg.training.first_cam_mediod
self.normalize_first_camera = cfg.training.normalize_first_camera
self.gradient_clipping = cfg.training.gradient_clipping
self.l1_loss = cfg.training.l1_loss
self.reinit = cfg.training.reinit
if self.first_cam_mediod:
assert self.normalize_first_camera
self.pred_x0 = cfg.model.pred_x0
self.num_patches_x = cfg.model.num_patches_x
self.num_patches_y = cfg.model.num_patches_y
self.depth = cfg.model.depth
self.num_images = cfg.model.num_images
self.num_visualize = min(self.batch_size, 2)
self.random_num_images = cfg.model.random_num_images
self.feature_extractor = cfg.model.feature_extractor
self.append_ndc = cfg.model.append_ndc
self.use_homogeneous = cfg.model.use_homogeneous
self.freeze_transformer = cfg.model.freeze_transformer
self.cond_depth_mask = cfg.model.cond_depth_mask
self.dataset_name = cfg.dataset.name
self.shape = cfg.dataset.shape
self.apply_augmentation = cfg.dataset.apply_augmentation
self.mask_holes = cfg.dataset.mask_holes
self.image_size = cfg.dataset.image_size
if not self.regression and (self.diffuse_origins_and_endpoints or self.diffuse_depths):
assert self.mask_holes or self.cond_depth_mask
if self.regression:
assert self.pred_x0
self.start_time = None
self.iteration = 0
self.epoch = 0
self.wandb_id = None
self.hostname = socket.gethostname()
if self.dpt_head:
find_unused_parameters = True
else:
find_unused_parameters = False
ddp_scaler = DistributedDataParallelKwargs(
find_unused_parameters=find_unused_parameters
)
init_kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=5400))
self.accelerator = Accelerator(
even_batches=False,
device_placement=False,
kwargs_handlers=[ddp_scaler, init_kwargs],
)
self.device = self.accelerator.device
scheduler = NoiseScheduler(
type=cfg.noise_scheduler.type,
max_timesteps=cfg.noise_scheduler.max_timesteps,
beta_start=cfg.noise_scheduler.beta_start,
beta_end=cfg.noise_scheduler.beta_end,
)
if self.dpt_head:
self.model = RayDiffuserDPT(
depth=self.depth,
width=self.num_patches_x,
P=1,
max_num_images=self.num_images,
noise_scheduler=scheduler,
freeze_encoder=self.freeze_encoder,
feature_extractor=self.feature_extractor,
append_ndc=self.append_ndc,
use_unconditional=self.prob_unconditional > 0,
diffuse_depths=self.diffuse_depths,
depth_resolution=self.depth_resolution,
encoder_features=self.dpt_encoder_features,
use_homogeneous=self.use_homogeneous,
freeze_transformer=self.freeze_transformer,
cond_depth_mask=self.cond_depth_mask,
).to(self.device)
else:
self.model = RayDiffuser(
depth=self.depth,
width=self.num_patches_x,
P=1,
max_num_images=self.num_images,
noise_scheduler=scheduler,
freeze_encoder=self.freeze_encoder,
feature_extractor=self.feature_extractor,
append_ndc=self.append_ndc,
use_unconditional=self.prob_unconditional > 0,
diffuse_depths=self.diffuse_depths,
depth_resolution=self.depth_resolution,
use_homogeneous=self.use_homogeneous,
cond_depth_mask=self.cond_depth_mask,
).to(self.device)
if self.dpt_head:
depth_size = self.full_num_patches_x
elif self.depth_resolution > 1:
depth_size = self.num_patches_x * self.depth_resolution
else:
depth_size = self.num_patches_x
self.depth_size = depth_size
if self.dataset_name == "multi":
self.dataset, self.train_dataloader, self.test_dataset = get_multiloader(
num_images=self.num_images,
apply_augmentation=self.apply_augmentation,
load_extra_cameras=self.load_extra_cameras,
distort_image=self.distort,
center_crop=self.diffuse_origins_and_endpoints or self.diffuse_depths,
crop_images=not (self.diffuse_origins_and_endpoints or self.diffuse_depths),
load_depths=self.diffuse_origins_and_endpoints or self.diffuse_depths,
depth_size=depth_size,
mask_holes=self.mask_holes,
img_size=self.image_size,
batch_size=self.batch_size,
num_workers=cfg.training.num_workers,
dust3r_pairs=True,
)
elif self.dataset_name == "co3d":
self.dataset = Co3dDataset(
category=self.shape,
split="train",
num_images=self.num_images,
apply_augmentation=self.apply_augmentation,
load_extra_cameras=self.load_extra_cameras,
distort_image=self.distort,
center_crop=self.diffuse_origins_and_endpoints or self.diffuse_depths,
crop_images=not (self.diffuse_origins_and_endpoints or self.diffuse_depths),
load_depths=self.diffuse_origins_and_endpoints or self.diffuse_depths,
depth_size=depth_size,
mask_holes=self.mask_holes,
img_size=self.image_size,
)
self.train_dataloader = torch.utils.data.DataLoader(
self.dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=cfg.training.num_workers,
pin_memory=True,
drop_last=True,
)
self.test_dataset = Co3dDataset(
category=self.shape,
split="test",
num_images=self.num_images,
apply_augmentation=False,
load_extra_cameras=self.load_extra_cameras,
distort_image=self.distort,
center_crop=self.diffuse_origins_and_endpoints or self.diffuse_depths,
crop_images=not (self.diffuse_origins_and_endpoints or self.diffuse_depths),
load_depths=self.diffuse_origins_and_endpoints or self.diffuse_depths,
depth_size=depth_size,
mask_holes=self.mask_holes,
img_size=self.image_size,
)
else:
raise NotImplementedError(f"Dataset '{self.dataset_name}' is not supported.")
self.lr = 1e-4
self.output_dir = hydra.core.hydra_config.HydraConfig.get().runtime.output_dir
self.checkpoint_dir = os.path.join(self.output_dir, "checkpoints")
if self.accelerator.is_main_process:
name = os.path.basename(self.output_dir)
name += f"_{self.debug.run_name}"
print("Output dir:", self.output_dir)
with open(os.path.join(self.output_dir, name), "w"):
# Create empty tag with name
pass
self.name = name
conf_dict = omegaconf.OmegaConf.to_container(
cfg, resolve=True, throw_on_missing=True
)
conf_dict["output_dir"] = self.output_dir
conf_dict["hostname"] = self.hostname
if self.dpt_head:
self.init_optimizer_with_separate_lrs()
else:
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr)
self.gradscaler = torch.cuda.amp.GradScaler(growth_interval=100000, enabled=self.mixed_precision)
self.model, self.optimizer, self.train_dataloader = self.accelerator.prepare(
self.model, self.optimizer, self.train_dataloader
)
if self.resume:
checkpoint_files = sorted(glob(os.path.join(self.checkpoint_dir, "*.pth")))
last_checkpoint = checkpoint_files[-1]
print("Resuming from checkpoint:", last_checkpoint)
self.load_model(last_checkpoint, load_metadata=True)
elif self.pretrain_path != "":
print("Loading pretrained model:", self.pretrain_path)
self.load_model(self.pretrain_path, load_metadata=False)
if self.accelerator.is_main_process:
mode = "online" if cfg.debug.wandb else "disabled"
if self.wandb_id is None:
self.wandb_id = wandb.util.generate_id()
self.wandb_run = wandb.init(
mode=mode,
name=name,
project=cfg.debug.project_name,
config=conf_dict,
resume=self.resume,
id=self.wandb_id,
)
wandb.define_metric("iteration")
noise_schedule = self.get_module().noise_scheduler.plot_schedule(
return_image=True
)
wandb.log(
{"Schedule": wandb.Image(noise_schedule, caption="Noise Schedule")}
)
def get_module(self):
if isinstance(self.model, torch.nn.parallel.DistributedDataParallel):
model = self.model.module
else:
model = self.model
return model
def init_optimizer_with_separate_lrs(self):
print("Use different LRs for the DINOv2 encoder and DiT!")
feature_extractor_params = [
p for n, p in self.model.feature_extractor.named_parameters()
]
feature_extractor_param_names = [
"feature_extractor." + n for n, _ in self.model.feature_extractor.named_parameters()
]
ray_predictor_params = [
p for n, p in self.model.ray_predictor.named_parameters()
]
ray_predictor_param_names = [
"ray_predictor." + n for n, p in self.model.ray_predictor.named_parameters()
]
other_params = [
p for n, p in self.model.named_parameters()
if n not in feature_extractor_param_names + ray_predictor_param_names
]
self.optimizer = torch.optim.Adam([
{'params': feature_extractor_params, 'lr': self.lr * 0.1}, # Lower LR for feature extractor
{'params': ray_predictor_params, 'lr': self.lr * 0.1}, # Lower LR for DIT (ray_predictor)
{'params': other_params, 'lr': self.lr} # Normal LR for other parts of the model
])
def train(self):
while self.iteration < self.max_iterations:
for batch in self.train_dataloader:
t0 = time.time()
self.optimizer.zero_grad()
float_type = torch.bfloat16 if self.bfloat else torch.float16
with torch.cuda.amp.autocast(
enabled=self.mixed_precision, dtype=float_type
):
images = batch["image"].to(self.device)
focal_lengths = batch["focal_length"].to(self.device)
crop_params = batch["crop_parameters"].to(self.device)
principal_points = batch["principal_point"].to(self.device)
R = batch["R"].to(self.device)
T = batch["T"].to(self.device)
if "distortion_coefficients" in batch:
distortion_coefficients = batch["distortion_coefficients"]
else:
distortion_coefficients = [None for _ in range(R.shape[0])]
depths = batch["depth"].to(self.device)
if self.no_bg_targets:
masks = batch["depth_masks"].to(self.device).bool()
cameras_og = [
PerspectiveCameras(
focal_length=focal_lengths[b],
principal_point=principal_points[b],
R=R[b],
T=T[b],
device=self.device,
)
for b in range(self.batch_size)
]
cameras, _ = normalize_cameras_batch(
cameras=cameras_og,
scale=self.translation_scale,
normalize_first_camera=self.normalize_first_camera,
depths=(
None
if not (self.diffuse_origins_and_endpoints or self.diffuse_depths)
else depths
),
first_cam_mediod=self.first_cam_mediod,
crop_parameters=crop_params,
num_patches_x=self.depth_size,
num_patches_y=self.depth_size,
distortion_coeffs=distortion_coefficients,
)
# Now that cameras are normalized, fix shapes of camera parameters
if self.load_extra_cameras or self.random_num_images:
if self.random_num_images:
num_images = torch.randint(2, self.num_images + 1, (1,))
else:
num_images = self.num_images
# The correct number of images is already loaded.
# Only need to modify these camera parameters shapes.
focal_lengths = focal_lengths[:, :num_images]
crop_params = crop_params[:, :num_images]
R = R[:, :num_images]
T = T[:, :num_images]
images = images[:, :num_images]
depths = depths[:, :num_images]
masks = masks[:, :num_images]
cameras = [
PerspectiveCameras(
focal_length=cameras[b].focal_length[:num_images],
principal_point=cameras[b].principal_point[:num_images],
R=cameras[b].R[:num_images],
T=cameras[b].T[:num_images],
device=self.device,
)
for b in range(self.batch_size)
]
if self.regression:
low = self.get_module().noise_scheduler.max_timesteps - 1
else:
low = 0
t = torch.randint(
low=low,
high=self.get_module().noise_scheduler.max_timesteps,
size=(self.batch_size,),
device=self.device,
)
if self.prob_unconditional > 0:
unconditional_mask = (
(torch.rand(self.batch_size) < self.prob_unconditional)
.float()
.to(self.device)
)
else:
unconditional_mask = None
if self.distort:
raise NotImplementedError()
else:
gt_rays = []
rays_dirs = []
rays = []
for i, (camera, crop_param, depth) in enumerate(
zip(cameras, crop_params, depths)
):
if self.diffuse_origins_and_endpoints:
mode = "segment"
else:
mode = "plucker"
r = cameras_to_rays(
cameras=camera,
num_patches_x=self.full_num_patches_x,
num_patches_y=self.full_num_patches_y,
crop_parameters=crop_param,
depths=depth,
mode=mode,
depth_resolution=self.depth_resolution,
nearest_neighbor=self.nearest_neighbor,
distortion_coefficients=distortion_coefficients[i],
)
rays_dirs.append(r.get_directions())
gt_rays.append(r)
if self.diffuse_origins_and_endpoints:
assert r.mode == "segment"
elif self.diffuse_depths:
assert r.mode == "plucker"
if self.unit_normalize_scene:
if self.diffuse_origins_and_endpoints:
assert r.mode == "segment"
# Let's say SD should be 0.5
scale = r.get_segments().std() * self.sd_scale
if scale.isnan().any():
assert False
camera.T /= scale
r.rays /= scale
depths[i] /= scale
else:
assert r.mode == "plucker"
scale = r.depths.std() * self.sd_scale
if scale.isnan().any():
assert False
camera.T /= scale
r.depths /= scale
depths[i] /= scale
rays.append(
r.to_spatial(
include_ndc_coordinates=self.append_ndc,
include_depths=self.diffuse_depths,
use_homogeneous=self.use_homogeneous,
)
)
rays_tensor = torch.stack(rays, dim=0)
if self.append_ndc:
ndc_coordinates = rays_tensor[..., -2:, :, :]
rays_tensor = rays_tensor[..., :-2, :, :]
if self.dpt_head:
xy_grid = compute_ndc_coordinates(
crop_params,
num_patches_x=self.depth_size // 16,
num_patches_y=self.depth_size // 16,
distortion_coeffs=distortion_coefficients,
)[..., :2]
ndc_coordinates = xy_grid.permute(0, 1, 4, 2, 3).contiguous()
else:
ndc_coordinates = None
if self.cond_depth_mask:
condition_mask = masks
else:
condition_mask = None
if rays_tensor.isnan().any():
import pickle
with open("bad.json", "wb") as f:
pickle.dump(batch, f)
ipdb.set_trace()
eps_pred, eps = self.model(
images=images,
rays=rays_tensor,
t=t,
ndc_coordinates=ndc_coordinates,
unconditional_mask=unconditional_mask,
depth_mask=condition_mask,
)
if self.pred_x0:
target = rays_tensor
else:
target = eps
if self.no_bg_targets:
C = eps_pred.shape[2]
loss_masks = masks.unsqueeze(2).repeat(1, 1, C, 1, 1)
eps_pred = loss_masks * eps_pred
target = loss_masks * target
loss = 0
if self.l1_loss:
loss_reconstruction = torch.mean(torch.abs(eps_pred - target))
else:
loss_reconstruction = torch.mean((eps_pred - target) ** 2)
loss += loss_reconstruction
if self.mixed_precision:
self.gradscaler.scale(loss).backward()
scaled_norm = 0
for p in self.model.parameters():
if p.requires_grad and p.grad is not None:
param_norm = p.grad.data.norm(2)
scaled_norm += param_norm.item() ** 2
scaled_norm = scaled_norm ** 0.5
if self.gradient_clipping and self.accelerator.sync_gradients:
self.accelerator.clip_grad_norm_(
self.get_module().parameters(), 1
)
clipped_norm = 0
for p in self.model.parameters():
if p.requires_grad and p.grad is not None:
param_norm = p.grad.data.norm(2)
clipped_norm += param_norm.item() ** 2
clipped_norm = clipped_norm ** 0.5
self.gradscaler.unscale_(self.optimizer)
unscaled_norm = 0
for p in self.model.parameters():
if p.requires_grad and p.grad is not None:
param_norm = p.grad.data.norm(2)
unscaled_norm += param_norm.item() ** 2
unscaled_norm = unscaled_norm ** 0.5
self.gradscaler.step(self.optimizer)
self.gradscaler.update()
else:
self.accelerator.backward(loss)
if self.gradient_clipping and self.accelerator.sync_gradients:
self.accelerator.clip_grad_norm_(
self.get_module().parameters(), 10
)
self.optimizer.step()
if self.accelerator.is_main_process:
if self.iteration % 10 == 0:
self.log_info(
loss_reconstruction,
t0,
self.lr,
scaled_norm,
unscaled_norm,
clipped_norm,
)
if self.iteration % self.interval_visualize == 0:
self.visualize(
images=unnormalize_image_for_vis(images.clone()),
cameras_gt=cameras,
depths=depths,
crop_parameters=crop_params,
distortion_coefficients=distortion_coefficients,
depth_mask=masks,
)
if self.iteration % self.interval_save_checkpoint == 0 and self.iteration != 0:
self.save_model()
if self.iteration % self.interval_delete_checkpoint == 0:
self.clear_old_checkpoints(self.checkpoint_dir)
if (
self.iteration % self.interval_evaluate == 0
and self.iteration > 0
):
self.evaluate_train_acc()
if self.iteration >= self.max_iterations + 1:
if self.delete_all:
self.clear_old_checkpoints(
self.checkpoint_dir, clear_all_old=True
)
return
self.iteration += 1
if self.reinit and self.iteration >= 50000:
state_dict = self.get_module().state_dict()
self.model = RayDiffuserDPT(
depth=self.depth,
width=self.num_patches_x,
P=1,
max_num_images=self.num_images,
noise_scheduler=self.get_module().noise_scheduler,
freeze_encoder=False,
feature_extractor=self.feature_extractor,
append_ndc=self.append_ndc,
use_unconditional=self.prob_unconditional > 0,
diffuse_depths=self.diffuse_depths,
depth_resolution=self.depth_resolution,
encoder_features=self.dpt_encoder_features,
use_homogeneous=self.use_homogeneous,
freeze_transformer=False,
cond_depth_mask=self.cond_depth_mask,
).to(self.device)
self.init_optimizer_with_separate_lrs()
self.gradscaler = torch.cuda.amp.GradScaler(growth_interval=100000, enabled=self.mixed_precision)
self.model, self.optimizer = self.accelerator.prepare(
self.model, self.optimizer
)
msg = self.get_module().load_state_dict(
state_dict,
strict=True,
)
print(msg)
self.reinit = False
self.epoch += 1
def load_model(self, path, load_metadata=True):
save_dict = torch.load(path, map_location=self.device)
del save_dict["state_dict"]["ray_predictor.x_pos_enc.image_pos_table"]
if not self.resume:
if len(save_dict["state_dict"]["scratch.input_conv.weight"].shape) == 2 and self.dpt_head:
print("Initialize conv layer weights from the linear layer!")
C = save_dict["state_dict"]["scratch.input_conv.weight"].shape[1]
input_conv_weight = save_dict["state_dict"]["scratch.input_conv.weight"].view(384, C, 1, 1).repeat(1, 1, 16, 16) / 256.
input_conv_bias = save_dict["state_dict"]["scratch.input_conv.bias"]
self.get_module().scratch.input_conv.weight.data = input_conv_weight
self.get_module().scratch.input_conv.bias.data = input_conv_bias
del save_dict["state_dict"]["scratch.input_conv.weight"]
del save_dict["state_dict"]["scratch.input_conv.bias"]
missing, unexpected = self.get_module().load_state_dict(
save_dict["state_dict"],
strict=False,
)
print(f"Missing keys: {missing}")
print(f"Unexpected keys: {unexpected}")
if load_metadata:
self.iteration = save_dict["iteration"]
self.epoch = save_dict["epoch"]
time_elapsed = save_dict["elapsed"]
self.start_time = time.time() - time_elapsed
if "wandb_id" in save_dict:
self.wandb_id = save_dict["wandb_id"]
self.optimizer.load_state_dict(save_dict["optimizer"])
self.gradscaler.load_state_dict(save_dict["gradscaler"])
def save_model(self):
path = os.path.join(self.checkpoint_dir, f"ckpt_{self.iteration:08d}.pth")
os.makedirs(os.path.dirname(path), exist_ok=True)
elapsed = time.time() - self.start_time if self.start_time is not None else 0
save_dict = {
"epoch": self.epoch,
"elapsed": elapsed,
"gradscaler": self.gradscaler.state_dict(),
"iteration": self.iteration,
"state_dict": self.get_module().state_dict(),
"optimizer": self.optimizer.state_dict(),
"wandb_id": self.wandb_id,
}
torch.save(save_dict, path)
def clear_old_checkpoints(self, checkpoint_dir, clear_all_old=False):
print("Clearing old checkpoints")
checkpoint_files = sorted(glob(os.path.join(checkpoint_dir, "ckpt_*.pth")))
if clear_all_old:
for checkpoint_file in checkpoint_files[:-1]:
os.remove(checkpoint_file)
else:
for checkpoint_file in checkpoint_files:
checkpoint = os.path.basename(checkpoint_file)
checkpoint_iteration = int("".join(filter(str.isdigit, checkpoint)))
if checkpoint_iteration % self.interval_delete_checkpoint != 0:
os.remove(checkpoint_file)
def log_info(
self,
loss,
t0,
lr,
scaled_norm,
unscaled_norm,
clipped_norm,
):
if self.start_time is None:
self.start_time = time.time()
time_elapsed = round(time.time() - self.start_time)
time_remaining = round(
(time.time() - self.start_time)
/ (self.iteration + 1)
* (self.max_iterations - self.iteration)
)
disp = [
f"Iter: {self.iteration}/{self.max_iterations}",
f"Epoch: {self.epoch}",
f"Loss: {loss.item():.4f}",
f"LR: {lr:.7f}",
f"Grad Norm: {scaled_norm:.4f}/{unscaled_norm:.4f}/{clipped_norm:.4f}",
f"Elap: {str(datetime.timedelta(seconds=time_elapsed))}",
f"Rem: {str(datetime.timedelta(seconds=time_remaining))}",
self.hostname,
self.name,
]
print(", ".join(disp), flush=True)
wandb_log = {
"loss": loss.item(),
"iter_time": time.time() - t0,
"lr": lr,
"iteration": self.iteration,
"hours_remaining": time_remaining / 3600,
"gradient norm": scaled_norm,
"unscaled norm": unscaled_norm,
"clipped norm": clipped_norm,
}
wandb.log(wandb_log)
def visualize(
self,
images,
cameras_gt,
crop_parameters=None,
depths=None,
distortion_coefficients=None,
depth_mask=None,
high_loss=False,
):
self.get_module().eval()
for camera in cameras_gt:
# AMP may not cast back to float
camera.R = camera.R.float()
camera.T = camera.T.float()
loss_tag = "" if not high_loss else " HIGH LOSS"
for i in range(self.num_visualize):
imgs = view_color_coded_images_from_tensor(images[i].cpu(), depth=False)
im = wandb.Image(imgs, caption=f"iteration {self.iteration} example {i}")
wandb.log({f"Vis images {i}{loss_tag}": im})
if self.cond_depth_mask:
imgs = view_color_coded_images_from_tensor(
depth_mask[i].cpu(), depth=True
)
im = wandb.Image(
imgs, caption=f"iteration {self.iteration} example {i}"
)
wandb.log({f"Vis masks {i}{loss_tag}": im})
vis_depths, _, _ = create_training_visualizations(
model=self.get_module(),
images=images[: self.num_visualize],
device=self.device,
cameras_gt=cameras_gt,
pred_x0=self.pred_x0,
num_images=images.shape[1],
crop_parameters=crop_parameters[: self.num_visualize],
visualize_pred=self.regression,
return_first=self.regression,
calculate_intrinsics=self.calculate_intrinsics,
mode="segment" if self.diffuse_origins_and_endpoints else "plucker",
depths=depths[: self.num_visualize],
diffuse_depths=self.diffuse_depths,
full_num_patches_x=self.full_num_patches_x,
full_num_patches_y=self.full_num_patches_y,
use_homogeneous=self.use_homogeneous,
distortion_coefficients=distortion_coefficients,
)
for i, vis_image in enumerate(vis_depths):
im = wandb.Image(
vis_image, caption=f"iteration {self.iteration} example {i}"
)
for i, vis_image in enumerate(vis_depths):
im = wandb.Image(
vis_image, caption=f"iteration {self.iteration} example {i}"
)
wandb.log({f"Vis origins and endpoints {i}{loss_tag}": im})
self.get_module().train()
def evaluate_train_acc(self, num_evaluate=10):
print("Evaluating train accuracy")
model = self.get_module()
model.eval()
additional_timesteps = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90]
num_images = self.num_images
for split in ["train", "test"]:
if split == "train":
if self.dataset_name != "co3d":
to_evaluate = self.dataset.datasets
names = self.dataset.names
else:
to_evaluate = [self.dataset]
names = ["co3d"]
elif split == "test":
if self.dataset_name != "co3d":
to_evaluate = self.test_dataset.datasets
names = self.test_dataset.names
else:
to_evaluate = [self.test_dataset]
names = ["co3d"]
for name, dataset in zip(names, to_evaluate):
results = evaluate(
cfg=self.cfg,
model=model,
dataset=dataset,
num_images=num_images,
device=self.device,
additional_timesteps=additional_timesteps,
num_evaluate=num_evaluate,
use_pbar=True,
mode="segment" if self.diffuse_origins_and_endpoints else "plucker",
metrics=False,
)
R_err = []
CC_err = []
for key in results.keys():
R_err.append([v["R_error"] for v in results[key]])
CC_err.append([v["CC_error"] for v in results[key]])
R_err = np.array(R_err)
CC_err = np.array(CC_err)
R_acc_15 = np.mean(R_err < 15, (0, 2)).max()
CC_acc = np.mean(CC_err < 0.1, (0, 2)).max()
wandb.log(
{
f"R_acc_15_{name}_{split}": R_acc_15,
"iteration": self.iteration,
}
)
wandb.log(
{
f"CC_acc_0.1_{name}_{split}": CC_acc,
"iteration": self.iteration,
}
)
model.train()
@hydra.main(config_path="./conf", config_name="config", version_base="1.3")
def main(cfg):
print(cfg)
torch.autograd.set_detect_anomaly(cfg.debug.anomaly_detection)
torch.set_float32_matmul_precision(cfg.training.matmul_precision)
trainer = Trainer(cfg=cfg)
trainer.train()
if __name__ == "__main__":
main()
|