File size: 6,892 Bytes
2f85de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# python3.8
"""Contains utility functions for rendering."""
import torch

def normalize_vecs(vectors):
    """
    Normalize vector lengths.
    """
    return vectors / (torch.norm(vectors, dim=-1, keepdim=True))

def truncated_normal(tensor, mean=0, std=1):
    """
    Samples from truncated normal distribution.
    """
    size = tensor.shape
    tmp = tensor.new_empty(size + (4,)).normal_()
    valid = (tmp < 2) & (tmp > -2)
    ind = valid.max(-1, keepdim=True)[1]
    tensor.data.copy_(tmp.gather(-1, ind).squeeze(-1))
    tensor.data.mul_(std).add_(mean)
    return tensor

def get_grid_coords(points, bounds):
    """ transform points from the world coordinate to the volume coordinate
    pts: batch_size, num_point, 3
    bounds: 2, 3
    """
    # normalize the points
    bounds = bounds[None]
    min_xyz = bounds[:, :1]
    points = points - min_xyz
    # convert the voxel coordinate to [-1, 1]
    size = bounds[:, 1] - bounds[:, 0]
    points = (points / size[:, None]) * 2 - 1
    return points

def grid_sample_3d(image, optical):
    """grid sample images by the optical in 3D format
    image: batch_size, channel, D, H, W
    optical: batch_size, D, H, W, 3
    """
    N, C, ID, IH, IW = image.shape
    _, D, H, W, _ = optical.shape

    ix = optical[..., 0]
    iy = optical[..., 1]
    iz = optical[..., 2]

    ix = ((ix + 1) / 2) * (IW - 1)
    iy = ((iy + 1) / 2) * (IH - 1)
    iz = ((iz + 1) / 2) * (ID - 1)
    with torch.no_grad():
        ix_tnw = torch.floor(ix)
        iy_tnw = torch.floor(iy)
        iz_tnw = torch.floor(iz)

        ix_tne = ix_tnw + 1
        iy_tne = iy_tnw
        iz_tne = iz_tnw

        ix_tsw = ix_tnw
        iy_tsw = iy_tnw + 1
        iz_tsw = iz_tnw

        ix_tse = ix_tnw + 1
        iy_tse = iy_tnw + 1
        iz_tse = iz_tnw

        ix_bnw = ix_tnw
        iy_bnw = iy_tnw
        iz_bnw = iz_tnw + 1

        ix_bne = ix_tnw + 1
        iy_bne = iy_tnw
        iz_bne = iz_tnw + 1

        ix_bsw = ix_tnw
        iy_bsw = iy_tnw + 1
        iz_bsw = iz_tnw + 1

        ix_bse = ix_tnw + 1
        iy_bse = iy_tnw + 1
        iz_bse = iz_tnw + 1

    tnw = (ix_bse - ix) * (iy_bse - iy) * (iz_bse - iz)
    tne = (ix - ix_bsw) * (iy_bsw - iy) * (iz_bsw - iz)
    tsw = (ix_bne - ix) * (iy - iy_bne) * (iz_bne - iz)
    tse = (ix - ix_bnw) * (iy - iy_bnw) * (iz_bnw - iz)
    bnw = (ix_tse - ix) * (iy_tse - iy) * (iz - iz_tse)
    bne = (ix - ix_tsw) * (iy_tsw - iy) * (iz - iz_tsw)
    bsw = (ix_tne - ix) * (iy - iy_tne) * (iz - iz_tne)
    bse = (ix - ix_tnw) * (iy - iy_tnw) * (iz - iz_tnw)

    with torch.no_grad():
        torch.clamp(ix_tnw, 0, IW - 1, out=ix_tnw)
        torch.clamp(iy_tnw, 0, IH - 1, out=iy_tnw)
        torch.clamp(iz_tnw, 0, ID - 1, out=iz_tnw)

        torch.clamp(ix_tne, 0, IW - 1, out=ix_tne)
        torch.clamp(iy_tne, 0, IH - 1, out=iy_tne)
        torch.clamp(iz_tne, 0, ID - 1, out=iz_tne)

        torch.clamp(ix_tsw, 0, IW - 1, out=ix_tsw)
        torch.clamp(iy_tsw, 0, IH - 1, out=iy_tsw)
        torch.clamp(iz_tsw, 0, ID - 1, out=iz_tsw)

        torch.clamp(ix_tse, 0, IW - 1, out=ix_tse)
        torch.clamp(iy_tse, 0, IH - 1, out=iy_tse)
        torch.clamp(iz_tse, 0, ID - 1, out=iz_tse)

        torch.clamp(ix_bnw, 0, IW - 1, out=ix_bnw)
        torch.clamp(iy_bnw, 0, IH - 1, out=iy_bnw)
        torch.clamp(iz_bnw, 0, ID - 1, out=iz_bnw)

        torch.clamp(ix_bne, 0, IW - 1, out=ix_bne)
        torch.clamp(iy_bne, 0, IH - 1, out=iy_bne)
        torch.clamp(iz_bne, 0, ID - 1, out=iz_bne)

        torch.clamp(ix_bsw, 0, IW - 1, out=ix_bsw)
        torch.clamp(iy_bsw, 0, IH - 1, out=iy_bsw)
        torch.clamp(iz_bsw, 0, ID - 1, out=iz_bsw)

        torch.clamp(ix_bse, 0, IW - 1, out=ix_bse)
        torch.clamp(iy_bse, 0, IH - 1, out=iy_bse)
        torch.clamp(iz_bse, 0, ID - 1, out=iz_bse)

    image = image.view(N, C, ID * IH * IW)

    tnw_val = torch.gather(image, 2,
                           (iz_tnw * IW * IH + iy_tnw * IW +
                            ix_tnw).long().view(N, 1,
                                                D * H * W).repeat(1, C, 1))
    tne_val = torch.gather(image, 2,
                           (iz_tne * IW * IH + iy_tne * IW +
                            ix_tne).long().view(N, 1,
                                                D * H * W).repeat(1, C, 1))
    tsw_val = torch.gather(image, 2,
                           (iz_tsw * IW * IH + iy_tsw * IW +
                            ix_tsw).long().view(N, 1,
                                                D * H * W).repeat(1, C, 1))
    tse_val = torch.gather(image, 2,
                           (iz_tse * IW * IH + iy_tse * IW +
                            ix_tse).long().view(N, 1,
                                                D * H * W).repeat(1, C, 1))
    bnw_val = torch.gather(image, 2,
                           (iz_bnw * IW * IH + iy_bnw * IW +
                            ix_bnw).long().view(N, 1,
                                                D * H * W).repeat(1, C, 1))
    bne_val = torch.gather(image, 2,
                           (iz_bne * IW * IH + iy_bne * IW +
                            ix_bne).long().view(N, 1,
                                                D * H * W).repeat(1, C, 1))
    bsw_val = torch.gather(image, 2,
                           (iz_bsw * IW * IH + iy_bsw * IW +
                            ix_bsw).long().view(N, 1,
                                                D * H * W).repeat(1, C, 1))
    bse_val = torch.gather(image, 2,
                           (iz_bse * IW * IH + iy_bse * IW +
                            ix_bse).long().view(N, 1,
                                                D * H * W).repeat(1, C, 1))

    out_val = (tnw_val.view(N, C, D, H, W) * tnw.view(N, 1, D, H, W) +
               tne_val.view(N, C, D, H, W) * tne.view(N, 1, D, H, W) +
               tsw_val.view(N, C, D, H, W) * tsw.view(N, 1, D, H, W) +
               tse_val.view(N, C, D, H, W) * tse.view(N, 1, D, H, W) +
               bnw_val.view(N, C, D, H, W) * bnw.view(N, 1, D, H, W) +
               bne_val.view(N, C, D, H, W) * bne.view(N, 1, D, H, W) +
               bsw_val.view(N, C, D, H, W) * bsw.view(N, 1, D, H, W) +
               bse_val.view(N, C, D, H, W) * bse.view(N, 1, D, H, W))

    return out_val

def interpolate_feature(points, volume, bounds):
    """
    points: batch_size, num_point, 3
    volume: batch_size, num_channel, d, h, w
    bounds: 2, 3
    """
    grid_coords = get_grid_coords(points, bounds)
    grid_coords = grid_coords[:, None, None]
    # point_features = F.grid_sample(volume,
    #                                grid_coords,
    #                                padding_mode='zeros',
    #                                align_corners=True)
    point_features = grid_sample_3d(volume, grid_coords)
    point_features = point_features[:, :, 0, 0]
    return point_features