File size: 15,293 Bytes
2f85de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
# python3.8
"""Contains image renderer class."""

import torch
import torch.nn as nn
from .point_sampler import PointSampler
from .integrator import Integrator

__all__ = ['Renderer']


class Renderer(nn.Module):
    """Defines the class to render images.

    The renderer is a module that takes in latent codes and points, decides
    where to sample along each ray, and computes pixel colors/features using the
    volume rendering equation.

    Basically, the volume rendering pipiline consists of the following steps:

    1. Sample points in 3D Space.
    2. (Optional) Get the reference representation by injecting latent codes
       into the reference representation generator. Generally, the reference
       representation can be a feature volume (VolumenGAN), a triplane (EG3D) or
       others.
    3. Get the corresponding feature of each sampled point by the given feature
       extractor. Typically, the overall formulation is:
            feat = F(wp, points, options, ref_representation, post_module)
       where
        `feat`: The output points' features.
        `F`: The feature extractor.
        `wp`: The latent codes in W-sapce.
        `points`: Sampled points.
        `options`: Some options for rendering.
        `ref_representation`: The reference representation obtained in step 2.
        `post_module`: The post module, is usually a MLP.
    4. Get the sigma's and rgb's value (or feature) by feeding `feat` in
       step 3 into one or two fully-connected layer head.
    5. Coarse pass to do the integration.
    6. Hierarchically sample points on top of step 5.
    6. Fine pass to do the integration.

    Note: In the following scripts, meanings of variables `N, H, W, R, K, C` are:

    - `N`: Batch size.
    - `H`: Height of image.
    - `W`: Width of image.
    - `R`: Number of rays, usually equals `H * W`.
    - `K`: Number of points on each ray.
    - `C`: Number of channels w.r.t. features or images, e.t.c.
    """

    def __init__(self):
        super().__init__()
        self.point_sampler = PointSampler()
        self.integrator = Integrator()

    def forward(
        self,
        wp,
        feature_extractor,
        rendering_options,
        cam2world_matrix=None,
        position_encoder=None,
        ref_representation=None,
        post_module=None,
        post_module_kwargs={},
        fc_head=None,
        fc_head_kwargs={},
    ):
        #TODO: Organize `rendering_options` like the following format:
        '''
            rendering_options = dict(
                point_sampler_options=dict(
                    focal=None,
                    ...
                )
                integrator_options=dict(...),
                ....,
                xxx=xxx,  # some public parameters.
                ...
            )
        '''
        batch_size= wp.shape[0]

        # Sample points.
        sampling_point_res = self.point_sampler(
            batch_size=batch_size,
            focal=rendering_options.get('focal', None),
            image_boundary_value=rendering_options.get('image_boundary_value',
                                                       0.5),
            cam_look_at_dir=rendering_options.get('cam_look_at_dir', +1),
            pixel_center=rendering_options.get('pixel_center', True),
            y_descending=rendering_options.get('y_descending', False),
            image_size=rendering_options.get('resolution', 64),
            dis_min=rendering_options.get('ray_start', None),
            dis_max=rendering_options.get('ray_end', None),
            cam2world_matrix=cam2world_matrix,
            num_points=rendering_options.get('depth_resolution', 48),
            perturbation_strategy=rendering_options.get(
                'perturbation_strategy', 'uniform'),
            radius_strategy=rendering_options.get('radius_strategy', None),
            radius_fix=rendering_options.get('radius_fix', None),
            polar_strategy=rendering_options.get('polar_strategy', None),
            polar_fix=rendering_options.get('polar_fix', None),
            polar_mean=rendering_options.get('polar_mean', None),
            polar_stddev=rendering_options.get('polar_stddev', None),
            azimuthal_strategy=rendering_options.get('azimuthal_strategy',
                                                     None),
            azimuthal_fix=rendering_options.get('azimuthal_fix', None),
            azimuthal_mean=rendering_options.get('azimuthal_mean', None),
            azimuthal_stddev=rendering_options.get('azimuthal_stddev', None),
            fov=rendering_options.get('fov', 30),
        )
        points = sampling_point_res['points_world']   # [N, H, W, K, 3]
        ray_dirs = sampling_point_res['rays_world']   # [N, H, W, 3]
        ray_origins = sampling_point_res['ray_origins_world'] # [N, H, W, 3]
        z_coarse = sampling_point_res['radii']  # [N, H, W, K]

        # NOTE: `pitch` is used to stand for `polar` in other code.
        camera_polar = sampling_point_res['camera_polar'] # [N]
        # NOTE: `yaw` is used to stand for `azimuthal` in other code.
        camera_azimuthal = sampling_point_res['camera_azimuthal'] # [N]
        if camera_polar is not None:
            camera_polar = camera_polar.unsqueeze(-1)
        if camera_azimuthal is not None:
            camera_azimuthal = camera_azimuthal.unsqueeze(-1)

        # Reshape.
        N, H, W, K, _ = points.shape
        assert N == batch_size
        R = H * W   # number of rays
        points = points.reshape(N, R, K, -1)
        ray_dirs = ray_dirs.reshape(N, R, -1)
        ray_origins = ray_origins.reshape(N, R, -1)
        z_coarse = z_coarse.reshape(N, R, K, -1)

        out = self.get_sigma_rgb(wp,
                                 points,
                                 feature_extractor,
                                 rendering_options=rendering_options,
                                 position_encoder=position_encoder,
                                 ref_representation=ref_representation,
                                 post_module=post_module,
                                 post_module_kwargs=post_module_kwargs,
                                 fc_head=fc_head,
                                 fc_head_kwargs=dict(**fc_head_kwargs,
                                                     wp=wp),
                                 ray_dirs=ray_dirs,
                                 cam_matrix=cam2world_matrix)

        sigmas_coarse = out['sigma']  # [N, H * W * K, 1]
        rgbs_coarse = out['rgb']      # [N, H * W * K, C]
        sigmas_coarse = sigmas_coarse.reshape(N, R, K,
                                              sigmas_coarse.shape[-1])
        rgbs_coarse = rgbs_coarse.reshape(N, R, K, rgbs_coarse.shape[-1])

        # Do the integration.
        N_importance = rendering_options.get('depth_resolution_importance', 0)
        if N_importance > 0:
            # Do the integration in coarse pass.
            rendering_result = self.integrator(rgbs_coarse, sigmas_coarse,
                                                   z_coarse, rendering_options)
            weights = rendering_result['weights']

            # Importrance sampling.
            z_fine = self.sample_importance(
                z_coarse,
                weights,
                N_importance,
                smooth_weights=rendering_options.get('smooth_weights', True))
            points = ray_origins.unsqueeze(-2) + z_fine * ray_dirs.unsqueeze(-2)

            # Get sigma's and rgb's value (or feature).
            out = self.get_sigma_rgb(wp,
                                     points,
                                     feature_extractor,
                                     rendering_options=rendering_options,
                                     position_encoder=position_encoder,
                                     ref_representation=ref_representation,
                                     post_module=post_module,
                                     post_module_kwargs=post_module_kwargs,
                                     fc_head=fc_head,
                                     fc_head_kwargs=dict(**fc_head_kwargs,
                                                         wp=wp),
                                     ray_dirs=ray_dirs,
                                     cam_matrix=cam2world_matrix)

            sigmas_fine = out['sigma']
            rgbs_fine = out['rgb']
            sigmas_fine = sigmas_fine.reshape(N, R, N_importance,
                                              sigmas_fine.shape[-1])
            rgbs_fine = rgbs_fine.reshape(N, R, N_importance,
                                          rgbs_fine.shape[-1])

            # Gather coarse and fine results.
            all_zs, all_rgbs, all_sigmas = self.unify_samples(
                z_coarse, rgbs_coarse, sigmas_coarse,
                z_fine, rgbs_fine, sigmas_fine)

            # Do the integration in fine pass.
            final_rendering_result = self.integrator(
                all_rgbs, all_sigmas, all_zs, rendering_options)

        else:
            final_rendering_result = self.integrator(
                rgbs_coarse, sigmas_coarse, z_coarse, rendering_options)

        return {
            **final_rendering_result,
            **{
                'camera_azimuthal': camera_azimuthal,
                'camera_polar': camera_polar
            }, 
            **{
                'points': points,
                'sigmas': sigmas_fine,
                }
        }

    def get_sigma_rgb(self,
                      wp,
                      points,
                      feature_extractor,
                      rendering_options,
                      position_encoder=None,
                      ref_representation=None,
                      post_module=None,
                      post_module_kwargs={},
                      fc_head=None,
                      fc_head_kwargs={},
                      ray_dirs=None,
                      cam_matrix=None):
        # Get point feature in coarse pass.
        point_features = feature_extractor(wp, points, rendering_options,
                                           position_encoder,
                                           ref_representation, post_module,
                                           post_module_kwargs, ray_dirs, cam_matrix)

        # Get sigma's and rgb's value (or feature).
        if ray_dirs.ndim != points.ndim:
            ray_dirs = ray_dirs.unsqueeze(-2).expand_as(points)
        ray_dirs = ray_dirs.reshape(ray_dirs.shape[0], -1, ray_dirs.shape[-1])
                                                    # with shape [N, R * K, 3]
        out = fc_head(point_features, dirs=ray_dirs, **fc_head_kwargs)

        if rendering_options.get('noise_std', 0) > 0:
            out['sigma'] = out['sigma'] + torch.randn_like(
                out['sigma']) * rendering_options['noise_std']

        return out

    def unify_samples(self, depths1, rgbs1, sigmas1, depths2, rgbs2, sigmas2):
        all_depths = torch.cat([depths1, depths2], dim=-2)
        all_colors = torch.cat([rgbs1, rgbs2], dim=-2)
        all_densities = torch.cat([sigmas1, sigmas2], dim=-2)

        _, indices = torch.sort(all_depths, dim=-2)
        all_depths = torch.gather(all_depths, -2, indices)
        all_colors = torch.gather(
            all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
        all_densities = torch.gather(all_densities, -2,
                                     indices.expand(-1, -1, -1, 1))

        return all_depths, all_colors, all_densities

    def sample_importance(self,
                          z_vals,
                          weights,
                          N_importance,
                          smooth_weights=False):
        """ Implements NeRF importance sampling.

        Returns:
            importance_z_vals: Depths of importance sampled points along rays.
        """
        with torch.no_grad():
            batch_size, num_rays, samples_per_ray, _ = z_vals.shape
            z_vals = z_vals.reshape(batch_size * num_rays, samples_per_ray)
            weights = weights.reshape(batch_size * num_rays, -1) + 1e-5

            # smooth weights
            if smooth_weights:
                weights = torch.nn.functional.max_pool1d(
                    weights.unsqueeze(1).float(), 2, 1, padding=1)
                weights = torch.nn.functional.avg_pool1d(weights, 2,
                                                         1).squeeze()
                weights = weights + 0.01

            z_vals_mid = 0.5 * (z_vals[:, :-1] + z_vals[:, 1:])
            importance_z_vals = self.sample_pdf(z_vals_mid, weights[:, 1:-1],
                                                N_importance).detach().reshape(
                                                    batch_size, num_rays,
                                                    N_importance, 1)
        return importance_z_vals

    def sample_pdf(self, bins, weights, N_importance, det=False, eps=1e-5):
        """Sample `N_importance` samples from `bins` with distribution defined
           by `weights`.

        Args:
            bins: (N_rays, N_samples_+1) where N_samples_ is the number of
                coarse samples per ray - 2
            weights: (N_rays, N_samples_)
            N_importance: the number of samples to draw from the distribution
            det: deterministic or not
            eps: a small number to prevent division by zero

        Returns:
            samples: the sampled samples

        Source:
            https://github.com/kwea123/nerf_pl/blob/master/models/rendering.py

        """
        N_rays, N_samples_ = weights.shape
        weights = weights + eps
        # prevent division by zero (don't do inplace op!)
        pdf = weights / torch.sum(weights, -1,
                                keepdim=True)  # (N_rays, N_samples_)
        cdf = torch.cumsum(pdf, -1)  # (N_rays, N_samples),
        # cumulative distribution function
        cdf = torch.cat([torch.zeros_like(cdf[:, :1]), cdf],
                        -1)          # (N_rays, N_samples_+1)
        # padded to 0~1 inclusive

        if det:
            u = torch.linspace(0, 1, N_importance, device=bins.device)
            u = u.expand(N_rays, N_importance)
        else:
            u = torch.rand(N_rays, N_importance, device=bins.device)
        u = u.contiguous()

        inds = torch.searchsorted(cdf, u)
        below = torch.clamp_min(inds - 1, 0)
        above = torch.clamp_max(inds, N_samples_)

        inds_sampled = torch.stack([below, above],
                                -1).view(N_rays, 2 * N_importance)
        cdf_g = torch.gather(cdf, 1, inds_sampled)
        cdf_g = cdf_g.view(N_rays, N_importance, 2)
        bins_g = torch.gather(bins, 1,
                              inds_sampled).view(N_rays, N_importance, 2)

        denom = cdf_g[..., 1] - cdf_g[..., 0]
        denom[denom < eps] = 1  # denom equals 0 means a bin has weight 0,
        # in which case it will not be sampled
        # anyway, therefore any value for it is fine
        # (set to 1 here)

        samples = (bins_g[..., 0] + (u - cdf_g[..., 0]) /
                                denom * (bins_g[..., 1] - bins_g[..., 0]))

        return samples