File size: 33,265 Bytes
2f85de4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""Generator architecture from the paper
"Alias-Free Generative Adversarial Networks"."""
import numpy as np
import scipy.signal
import scipy.optimize
import torch
import torch.nn as nn
import torch.nn.functional as F
import random
from utils import eg3d_misc as misc
from third_party.stylegan3_official_ops import conv2d_gradfix
from third_party.stylegan3_official_ops import filtered_lrelu
from third_party.stylegan3_official_ops import bias_act
from third_party.stylegan3_official_ops import upfirdn2d
#----------------------------------------------------------------------------
class SEL(torch.nn.Module):
def __init__(self, norm_nc, label_nc, hidden_nc=128):
super().__init__()
self.norm = nn.InstanceNorm2d(norm_nc, affine=False)
self.mlp_shared = nn.Conv2d(label_nc, hidden_nc, kernel_size=1, padding=0)
self.actv = nn.ReLU()
self.mlp_gamma = nn.Conv2d(hidden_nc, norm_nc, kernel_size=1, padding=0)
self.mlp_beta = nn.Conv2d(hidden_nc, norm_nc, kernel_size=1, padding=0)
def forward(self, x, hm):
x_s = x
x = self.norm(x)
hm = F.interpolate(hm, size=x.size()[2:], mode='bilinear', align_corners=True)
actv = self.actv(self.mlp_shared(hm))
gamma = self.mlp_gamma(actv)
beta = self.mlp_beta(actv)
out = x * (1+gamma) + beta
return out + 0.1 * x_s
class SEL_unet_pro(SEL):
def __init__(self, norm_nc, label_nc, hidden_nc=128, down_filter=None, slope=0.2, gain=np.sqrt(2), clamp=None):
super().__init__(norm_nc, label_nc, hidden_nc)
self.register_buffer('down_filter', down_filter)
self.slope = slope
self.gain = gain
self.clamp = clamp
def forward(self, x, hm):
x_size = x.shape[-1]
hm_size = hm.shape[-1]
if x_size != hm_size:
hm = upfirdn2d.upfirdn2d(x=hm, f=self.down_filter, down=hm_size//x_size, flip_filter=False, padding=int(2.5 * hm_size//x_size))
hm = self.mlp_shared(hm)
hm = bias_act.bias_act(x=hm, act='lrelu', alpha=self.slope, gain=self.gain, clamp=self.clamp)
gamma = self.mlp_gamma(hm)
beta = self.mlp_beta(hm)
out = self.norm(x) * (1+gamma) + beta
return out + 0.1 * x
class SEL_pro(SEL):
def __init__(self, norm_nc, label_nc, hidden_nc=128, down_filter=None, slope=0.2, gain=np.sqrt(2), clamp=None):
super().__init__(norm_nc, label_nc, hidden_nc)
self.zero_pad = nn.ZeroPad2d((576-256)//2)
self.register_buffer('down_filter', down_filter)
self.slope = slope
self.gain = gain
self.clamp = clamp
self.size_dict = {36: 36, 52: 72, 84: 144, 148: 288, 276: 576}
def forward(self, x, hm):
x_size = x.shape[-1]
x_large_size = self.size_dict[x_size]
hm = self.zero_pad(hm)
hm_size = hm.shape[-1]
assert hm_size % x_large_size == 0, f'hm shape {hm.shape[-1]}, x shape {x.shape[-1]}, {x_large_size}'
if hm_size != x_large_size:
hm = upfirdn2d.upfirdn2d(x=hm, f=self.down_filter, down=hm_size//x_large_size, flip_filter=False,
padding=int(2.5 * hm_size//x_large_size))
hm = self.mlp_shared(hm)
hm = bias_act.bias_act(x=hm, act='lrelu', alpha=self.slope, gain=self.gain, clamp=self.clamp)
pad_len = (x_large_size - x_size) // 2
if pad_len > 0:
hm = hm[..., pad_len:-pad_len, pad_len:-pad_len]
gamma = self.mlp_gamma(hm)
beta = self.mlp_beta(hm)
out = self.norm(x) * (1+gamma) + beta
return out + 0.1 * x
@misc.profiled_function
def modulated_conv2d(
x, # Input tensor: [batch_size, in_channels, in_height, in_width]
w, # Weight tensor: [out_channels, in_channels, kernel_height, kernel_width]
s, # Style tensor: [batch_size, in_channels]
demodulate = True, # Apply weight demodulation?
padding = 0, # Padding: int or [padH, padW]
input_gain = None, # Optional scale factors for the input channels: [], [in_channels], or [batch_size, in_channels]
):
with misc.suppress_tracer_warnings(): # this value will be treated as a constant
batch_size = int(x.shape[0])
out_channels, in_channels, kh, kw = w.shape
misc.assert_shape(w, [out_channels, in_channels, kh, kw]) # [OIkk]
misc.assert_shape(x, [batch_size, in_channels, None, None]) # [NIHW]
misc.assert_shape(s, [batch_size, in_channels]) # [NI]
# Pre-normalize inputs.
if demodulate:
w = w * w.square().mean([1,2,3], keepdim=True).rsqrt()
s = s * s.square().mean().rsqrt()
# Modulate weights.
w = w.unsqueeze(0) # [NOIkk]
w = w * s.unsqueeze(1).unsqueeze(3).unsqueeze(4) # [NOIkk]
# Demodulate weights.
if demodulate:
dcoefs = (w.square().sum(dim=[2,3,4]) + 1e-8).rsqrt() # [NO]
w = w * dcoefs.unsqueeze(2).unsqueeze(3).unsqueeze(4) # [NOIkk]
# Apply input scaling.
if input_gain is not None:
input_gain = input_gain.expand(batch_size, in_channels) # [NI]
w = w * input_gain.unsqueeze(1).unsqueeze(3).unsqueeze(4) # [NOIkk]
# Execute as one fused op using grouped convolution.
x = x.reshape(1, -1, *x.shape[2:])
w = w.reshape(-1, in_channels, kh, kw)
x = conv2d_gradfix.conv2d(input=x, weight=w.to(x.dtype), padding=padding, groups=batch_size)
x = x.reshape(batch_size, -1, *x.shape[2:])
return x
#----------------------------------------------------------------------------
class FullyConnectedLayer(torch.nn.Module):
def __init__(self,
in_features, # Number of input features.
out_features, # Number of output features.
activation = 'linear', # Activation function: 'relu', 'lrelu', etc.
bias = True, # Apply additive bias before the activation function?
lr_multiplier = 1, # Learning rate multiplier.
weight_init = 1, # Initial standard deviation of the weight tensor.
bias_init = 0, # Initial value of the additive bias.
low_rank = None,
):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.activation = activation
self.low_rank = low_rank
self.register_buffer('lr_multiplier', torch.tensor(lr_multiplier, dtype=torch.float))
if self.low_rank is None:
self.weight = torch.nn.Parameter(torch.randn([out_features, in_features]) * (weight_init / lr_multiplier))
else:
self.weight_left = torch.nn.Parameter(torch.randn([out_features, self.low_rank]) * (weight_init / lr_multiplier))
self.weight_right = torch.nn.Parameter(torch.randn([self.low_rank, in_features]) * (weight_init / lr_multiplier))
bias_init = np.broadcast_to(np.asarray(bias_init, dtype=np.float32), [out_features])
self.bias = torch.nn.Parameter(torch.from_numpy(bias_init / lr_multiplier)) if bias else None
self.weight_gain = 1 / np.sqrt(in_features)
self.bias_gain = 1
def forward(self, x):
if self.low_rank is None:
w = self.weight.to(x.dtype) * self.weight_gain * self.lr_multiplier
else:
w = torch.einsum('ab,bc->ac', self.weight_left, self.weight_right).to(x.dtype) * self.weight_gain * self.lr_multiplier
b = self.bias
if b is not None:
b = b.to(x.dtype)
if self.bias_gain * self.lr_multiplier != 1:
b = b * self.bias_gain * self.lr_multiplier
if self.activation == 'linear' and b is not None:
x = torch.addmm(b.unsqueeze(0), x, w.t())
else:
x = x.matmul(w.t())
x = bias_act.bias_act(x, b, act=self.activation)
return x
def extra_repr(self):
return f'in_features={self.in_features:d}, out_features={self.out_features:d}, activation={self.activation:s}'
#----------------------------------------------------------------------------
class MappingNetwork(torch.nn.Module):
def __init__(self,
z_dim, # Input latent (Z) dimensionality.
c_dim, # Conditioning label (C) dimensionality, 0 = no labels.
w_dim, # Intermediate latent (W) dimensionality.
num_ws, # Number of intermediate latents to output.
num_layers = 2, # Number of mapping layers.
lr_multiplier = 0.01, # Learning rate multiplier for the mapping layers.
w_avg_beta = 0.998, # Decay for tracking the moving average of W during training.
):
super().__init__()
self.z_dim = z_dim
self.c_dim = c_dim
self.w_dim = w_dim
self.num_ws = num_ws
self.num_layers = num_layers
self.w_avg_beta = w_avg_beta
# Construct layers.
self.embed = FullyConnectedLayer(self.c_dim, self.w_dim) if self.c_dim > 0 else None
features = [self.z_dim + (self.w_dim if self.c_dim > 0 else 0)] + [self.w_dim] * self.num_layers
for idx, in_features, out_features in zip(range(num_layers), features[:-1], features[1:]):
layer = FullyConnectedLayer(in_features, out_features, activation='lrelu', lr_multiplier=lr_multiplier)
setattr(self, f'fc{idx}', layer)
self.register_buffer('w_avg', torch.zeros([w_dim]))
def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, update_emas=False):
misc.assert_shape(z, [None, self.z_dim])
if truncation_cutoff is None:
truncation_cutoff = self.num_ws
# Embed, normalize, and concatenate inputs.
x = z.to(torch.float32)
x = x * (x.square().mean(1, keepdim=True) + 1e-8).rsqrt()
if self.c_dim > 0:
misc.assert_shape(c, [None, self.c_dim])
y = self.embed(c.to(torch.float32))
y = y * (y.square().mean(1, keepdim=True) + 1e-8).rsqrt()
x = torch.cat([x, y], dim=1) if x is not None else y
# Execute layers.
for idx in range(self.num_layers):
x = getattr(self, f'fc{idx}')(x)
# Update moving average of W.
if update_emas:
self.w_avg.copy_(x.detach().mean(dim=0).lerp(self.w_avg, self.w_avg_beta))
# Broadcast and apply truncation.
x = x.unsqueeze(1).repeat([1, self.num_ws, 1])
if truncation_psi != 1:
x[:, :truncation_cutoff] = self.w_avg.lerp(x[:, :truncation_cutoff], truncation_psi)
return x
def extra_repr(self):
return f'z_dim={self.z_dim:d}, c_dim={self.c_dim:d}, w_dim={self.w_dim:d}, num_ws={self.num_ws:d}'
#----------------------------------------------------------------------------
class SynthesisInput(torch.nn.Module):
def __init__(self,
w_dim, # Intermediate latent (W) dimensionality.
channels, # Number of output channels.
size, # Output spatial size: int or [width, height].
sampling_rate, # Output sampling rate.
bandwidth, # Output bandwidth.
offset_scale='0,0',
bound_len=0.5,
wo_transform=False,
):
super().__init__()
self.w_dim = w_dim
self.channels = channels
self.size = np.broadcast_to(np.asarray(size), [2])
self.sampling_rate = sampling_rate
self.bandwidth = bandwidth
self.wo_transform = wo_transform
self.x_offset_scale, self.y_offset_scale = list(map(float, offset_scale.split(',')))
self.bound_len = bound_len
# Draw random frequencies from uniform 2D disc.
freqs = torch.randn([self.channels, 2])
radii = freqs.square().sum(dim=1, keepdim=True).sqrt()
freqs /= radii * radii.square().exp().pow(0.25)
freqs *= bandwidth
phases = torch.rand([self.channels]) - 0.5
# Setup parameters and buffers.
self.weight = torch.nn.Parameter(torch.randn([self.channels, self.channels]))
if not wo_transform:
self.affine = FullyConnectedLayer(w_dim, 4, weight_init=0, bias_init=[1,0,0,0])
self.register_buffer('transform', torch.eye(3, 3)) # User-specified inverse transform wrt. resulting image.
self.register_buffer('freqs', freqs)
self.register_buffer('phases', phases)
self.x_offset = None
self.y_offset = None
def forward(self, w):
# Introduce batch dimension.
transforms = self.transform.unsqueeze(0) # [batch, row, col]
freqs = self.freqs.unsqueeze(0) # [batch, channel, xy]
phases = self.phases.unsqueeze(0) # [batch, channel]
# Apply learned transformation.
if not self.wo_transform:
t = self.affine(w) # t = (r_c, r_s, t_x, t_y)
t = t / t[:, :2].norm(dim=1, keepdim=True) # t' = (r'_c, r'_s, t'_x, t'_y)
m_r = torch.eye(3, device=w.device).unsqueeze(0).repeat([w.shape[0], 1, 1]) # Inverse rotation wrt. resulting image.
m_r[:, 0, 0] = t[:, 0] # r'_c
m_r[:, 0, 1] = -t[:, 1] # r'_s
m_r[:, 1, 0] = t[:, 1] # r'_s
m_r[:, 1, 1] = t[:, 0] # r'_c
m_t = torch.eye(3, device=w.device).unsqueeze(0).repeat([w.shape[0], 1, 1]) # Inverse translation wrt. resulting image.
m_t[:, 0, 2] = -t[:, 2] # t'_x
m_t[:, 1, 2] = -t[:, 3] # t'_y
transforms = m_r @ m_t @ transforms # First rotate resulting image, then translate, and finally apply user-specified transform.
# Transform frequencies.
phases = phases + (freqs @ transforms[:, :2, 2:]).squeeze(2)
freqs = freqs @ transforms[:, :2, :2]
# Dampen out-of-band frequencies that may occur due to the user-specified transform.
amplitudes = (1 - (freqs.norm(dim=2) - self.bandwidth) / (self.sampling_rate / 2 - self.bandwidth)).clamp(0, 1)
# Construct sampling grid.
theta = torch.eye(2, 3, device=w.device)
theta[0, 0] = self.bound_len * self.size[0] / self.sampling_rate
theta[1, 1] = self.bound_len * self.size[1] / self.sampling_rate
grids = torch.nn.functional.affine_grid(theta.unsqueeze(0), [1, 1, self.size[1], self.size[0]], align_corners=False)
offset_len = 1 - 2*self.bound_len
dx = (random.random() * offset_len - offset_len/2) if self.x_offset == None else self.x_offset
dy = (random.random() * offset_len - offset_len/2) if self.y_offset == None else self.y_offset
dx *= self.x_offset_scale
dy *= self.y_offset_scale
grids[..., 0] += dx
grids[..., 1] += dy
# Compute Fourier features.
x = (grids.unsqueeze(3) @ freqs.permute(0, 2, 1).unsqueeze(1).unsqueeze(2)).squeeze(3) # [batch, height, width, channel]
x = x + phases.unsqueeze(1).unsqueeze(2)
x = torch.sin(x * (np.pi * 2))
x = x * amplitudes.unsqueeze(1).unsqueeze(2)
# Apply trainable mapping.
weight = self.weight / np.sqrt(self.channels)
x = x @ weight.t()
# Ensure correct shape.
x = x.permute(0, 3, 1, 2) # [batch, channel, height, width]
if self.wo_transform:
x = x.repeat(w.shape[0], 1, 1, 1)
misc.assert_shape(x, [w.shape[0], self.channels, int(self.size[1]), int(self.size[0])])
return x
def extra_repr(self):
return '\n'.join([
f'w_dim={self.w_dim:d}, channels={self.channels:d}, size={list(self.size)},',
f'sampling_rate={self.sampling_rate:g}, bandwidth={self.bandwidth:g}'])
#----------------------------------------------------------------------------
class SynthesisLayer(torch.nn.Module):
def __init__(self,
w_dim, # Intermediate latent (W) dimensionality.
is_torgb, # Is this the final ToRGB layer?
is_critically_sampled, # Does this layer use critical sampling?
use_fp16, # Does this layer use FP16?
# Input & output specifications.
in_channels, # Number of input channels.
out_channels, # Number of output channels.
in_size, # Input spatial size: int or [width, height].
out_size, # Output spatial size: int or [width, height].
in_sampling_rate, # Input sampling rate (s).
out_sampling_rate, # Output sampling rate (s).
in_cutoff, # Input cutoff frequency (f_c).
out_cutoff, # Output cutoff frequency (f_c).
in_half_width, # Input transition band half-width (f_h).
out_half_width, # Output Transition band half-width (f_h).
# Hyperparameters.
conv_kernel = 3, # Convolution kernel size. Ignored for final the ToRGB layer.
filter_size = 6, # Low-pass filter size relative to the lower resolution when up/downsampling.
lrelu_upsampling = 2, # Relative sampling rate for leaky ReLU. Ignored for final the ToRGB layer.
use_radial_filters = False, # Use radially symmetric downsampling filter? Ignored for critically sampled layers.
conv_clamp = 256, # Clamp the output to [-X, +X], None = disable clamping.
magnitude_ema_beta = 0.999, # Decay rate for the moving average of input magnitudes.
label_nc = 0,
use_sel = False,
low_rank = None,
sel_type = 'normal',
**useless_stuff, # this part is dirty to be compatible with the same configuration system with stylegan2
):
super().__init__()
print('these configuration terms is not used:', useless_stuff)
self.w_dim = w_dim
self.is_torgb = is_torgb
self.is_critically_sampled = is_critically_sampled
self.use_fp16 = use_fp16
self.in_channels = in_channels
self.out_channels = out_channels
self.in_size = np.broadcast_to(np.asarray(in_size), [2])
self.out_size = np.broadcast_to(np.asarray(out_size), [2])
self.in_sampling_rate = in_sampling_rate
self.out_sampling_rate = out_sampling_rate
self.tmp_sampling_rate = max(in_sampling_rate, out_sampling_rate) * (1 if is_torgb else lrelu_upsampling)
self.in_cutoff = in_cutoff
self.out_cutoff = out_cutoff
self.in_half_width = in_half_width
self.out_half_width = out_half_width
self.conv_kernel = 1 if is_torgb else conv_kernel
self.conv_clamp = conv_clamp
self.magnitude_ema_beta = magnitude_ema_beta
self.use_sel = use_sel and not is_torgb
self.sel_type = sel_type
size_dict = {36: 36, 52: 72, 84: 144, 148: 288, 276: 576}
self.down_radial = use_radial_filters and not self.is_critically_sampled
if self.use_sel:
if self.sel_type == 'normal':
self.sel = SEL(norm_nc=in_channels, label_nc=label_nc)
elif self.sel_type == 'pro':
sel_down_factor = 576 // size_dict[self.in_size[0]]
sel_pro_down_filter = self.design_lowpass_filter(
numtaps=filter_size * sel_down_factor, cutoff=self.in_cutoff, width=self.in_half_width*2, fs=self.tmp_sampling_rate, radial=self.down_radial)
self.sel = SEL_pro(norm_nc=in_channels, label_nc=label_nc, hidden_nc=128, down_filter=sel_pro_down_filter,
slope=1 if is_torgb else 0.2, gain=1 if is_torgb else np.sqrt(2), clamp=256 if is_torgb else None)
# Setup parameters and buffers.
self.affine = FullyConnectedLayer(self.w_dim, self.in_channels, bias_init=1, low_rank=low_rank)
self.weight = torch.nn.Parameter(torch.randn([self.out_channels, self.in_channels, self.conv_kernel, self.conv_kernel]))
self.bias = torch.nn.Parameter(torch.zeros([self.out_channels]))
self.register_buffer('magnitude_ema', torch.ones([]))
# Design upsampling filter.
self.up_factor = int(np.rint(self.tmp_sampling_rate / self.in_sampling_rate))
assert self.in_sampling_rate * self.up_factor == self.tmp_sampling_rate
self.up_taps = filter_size * self.up_factor if self.up_factor > 1 and not self.is_torgb else 1
self.register_buffer('up_filter', self.design_lowpass_filter(
numtaps=self.up_taps, cutoff=self.in_cutoff, width=self.in_half_width*2, fs=self.tmp_sampling_rate))
# Design downsampling filter.
self.down_factor = int(np.rint(self.tmp_sampling_rate / self.out_sampling_rate))
assert self.out_sampling_rate * self.down_factor == self.tmp_sampling_rate
self.down_taps = filter_size * self.down_factor if self.down_factor > 1 and not self.is_torgb else 1
self.register_buffer('down_filter', self.design_lowpass_filter(
numtaps=self.down_taps, cutoff=self.out_cutoff, width=self.out_half_width*2, fs=self.tmp_sampling_rate, radial=self.down_radial))
# Compute padding.
pad_total = (self.out_size - 1) * self.down_factor + 1 # Desired output size before downsampling.
pad_total -= (self.in_size + self.conv_kernel - 1) * self.up_factor # Input size after upsampling.
pad_total += self.up_taps + self.down_taps - 2 # Size reduction caused by the filters.
pad_lo = (pad_total + self.up_factor) // 2 # Shift sample locations according to the symmetric interpretation (Appendix C.3).
pad_hi = pad_total - pad_lo
self.padding = [int(pad_lo[0]), int(pad_hi[0]), int(pad_lo[1]), int(pad_hi[1])]
def forward(self, x, w, heatmap=None, noise_mode='random', force_fp32=False, update_emas=False):
assert noise_mode in ['random', 'const', 'none'] # unused
misc.assert_shape(x, [None, self.in_channels, int(self.in_size[1]), int(self.in_size[0])])
misc.assert_shape(w, [x.shape[0], self.w_dim])
# Track input magnitude.
if update_emas:
with torch.autograd.profiler.record_function('update_magnitude_ema'):
magnitude_cur = x.detach().to(torch.float32).square().mean()
self.magnitude_ema.copy_(magnitude_cur.lerp(self.magnitude_ema, self.magnitude_ema_beta))
input_gain = self.magnitude_ema.rsqrt()
if self.use_sel:
x = self.sel(x, heatmap).to(x.dtype)
# Execute affine layer.
styles = self.affine(w)
if self.is_torgb:
weight_gain = 1 / np.sqrt(self.in_channels * (self.conv_kernel ** 2))
styles = styles * weight_gain
# Execute modulated conv2d.
dtype = torch.float16 if (self.use_fp16 and not force_fp32 and x.device.type == 'cuda') else torch.float32
x = modulated_conv2d(x=x.to(dtype), w=self.weight, s=styles,
padding=self.conv_kernel-1, demodulate=(not self.is_torgb), input_gain=input_gain)
# Execute bias, filtered leaky ReLU, and clamping.
gain = 1 if self.is_torgb else np.sqrt(2)
slope = 1 if self.is_torgb else 0.2
if self.up_factor == 1 and self.down_factor == 1:
x = bias_act.bias_act(x, self.bias.to(x.dtype), clamp=self.conv_clamp, act='lrelu')
else:
x = filtered_lrelu.filtered_lrelu(x=x, fu=self.up_filter, fd=self.down_filter, b=self.bias.to(x.dtype),
up=self.up_factor, down=self.down_factor, padding=self.padding, gain=gain, slope=slope, clamp=self.conv_clamp)
# Ensure correct shape and dtype.
misc.assert_shape(x, [None, self.out_channels, int(self.out_size[1]), int(self.out_size[0])])
assert x.dtype == dtype
return x
@staticmethod
def design_lowpass_filter(numtaps, cutoff, width, fs, radial=False):
assert numtaps >= 1
# Identity filter.
if numtaps == 1:
return None
# Separable Kaiser low-pass filter.
if not radial:
f = scipy.signal.firwin(numtaps=numtaps, cutoff=cutoff, width=width, fs=fs)
return torch.as_tensor(f, dtype=torch.float32)
# Radially symmetric jinc-based filter.
x = (np.arange(numtaps) - (numtaps - 1) / 2) / fs
r = np.hypot(*np.meshgrid(x, x))
f = scipy.special.j1(2 * cutoff * (np.pi * r)) / (np.pi * r)
beta = scipy.signal.kaiser_beta(scipy.signal.kaiser_atten(numtaps, width / (fs / 2)))
w = np.kaiser(numtaps, beta)
f *= np.outer(w, w)
f /= np.sum(f)
return torch.as_tensor(f, dtype=torch.float32)
def extra_repr(self):
return '\n'.join([
f'w_dim={self.w_dim:d}, is_torgb={self.is_torgb},',
f'is_critically_sampled={self.is_critically_sampled}, use_fp16={self.use_fp16},',
f'in_sampling_rate={self.in_sampling_rate:g}, out_sampling_rate={self.out_sampling_rate:g},',
f'in_cutoff={self.in_cutoff:g}, out_cutoff={self.out_cutoff:g},',
f'in_half_width={self.in_half_width:g}, out_half_width={self.out_half_width:g},',
f'in_size={list(self.in_size)}, out_size={list(self.out_size)},',
f'in_channels={self.in_channels:d}, out_channels={self.out_channels:d}'])
#----------------------------------------------------------------------------
class SynthesisNetwork(torch.nn.Module):
def __init__(self,
w_dim, # Intermediate latent (W) dimensionality.
img_resolution, # Output image resolution.
img_channels, # Number of color channels.
channel_base = 32768, # Overall multiplier for the number of channels.
channel_max = 512, # Maximum number of channels in any layer.
num_layers = 14, # Total number of layers, excluding Fourier features and ToRGB.
num_critical = 2, # Number of critically sampled layers at the end.
first_cutoff = 2, # Cutoff frequency of the first layer (f_{c,0}).
first_stopband = 2**2.1, # Minimum stopband of the first layer (f_{t,0}).
last_stopband_rel = 2**0.3, # Minimum stopband of the last layer, expressed relative to the cutoff.
margin_size = 10, # Number of additional pixels outside the image.
output_scale = 0.25, # Scale factor for the output image.
num_fp16_res = 4, # Use FP16 for the N highest resolutions.
label_nc = 0,
use_sel = False,
sel_type = 'pro',
low_rank = None,
offset_scale = '0,0',
bound_len = 0.5,
wo_transform = False,
**layer_kwargs, # Arguments for SynthesisLayer.
):
super().__init__()
self.w_dim = w_dim
self.num_ws = num_layers + 2
self.img_resolution = img_resolution
self.img_channels = img_channels
self.num_layers = num_layers
self.num_critical = num_critical
self.margin_size = margin_size
self.output_scale = output_scale
self.num_fp16_res = num_fp16_res
self.use_sel = use_sel
self.sel_type = sel_type
# Geometric progression of layer cutoffs and min. stopbands.
last_cutoff = self.img_resolution / 2 # f_{c,N}
last_stopband = last_cutoff * last_stopband_rel # f_{t,N}
exponents = np.minimum(np.arange(self.num_layers + 1) / (self.num_layers - self.num_critical), 1)
cutoffs = first_cutoff * (last_cutoff / first_cutoff) ** exponents # f_c[i]
stopbands = first_stopband * (last_stopband / first_stopband) ** exponents # f_t[i]
# Compute remaining layer parameters.
sampling_rates = np.exp2(np.ceil(np.log2(np.minimum(stopbands * 2, self.img_resolution)))) # s[i]
half_widths = np.maximum(stopbands, sampling_rates / 2) - cutoffs # f_h[i]
sizes = sampling_rates + self.margin_size * 2
sizes[-2:] = self.img_resolution
channels = np.rint(np.minimum((channel_base / 2) / cutoffs, channel_max))
channels[-1] = self.img_channels
# Construct layers.
self.input = SynthesisInput(
w_dim=self.w_dim, channels=int(channels[0]), size=int(sizes[0]),
sampling_rate=sampling_rates[0], bandwidth=cutoffs[0], offset_scale=offset_scale, bound_len=bound_len, wo_transform=wo_transform)
self.layer_names = []
for idx in range(self.num_layers + 1):
prev = max(idx - 1, 0)
is_torgb = (idx == self.num_layers)
is_critically_sampled = (idx >= self.num_layers - self.num_critical)
use_fp16 = (sampling_rates[idx] * (2 ** self.num_fp16_res) > self.img_resolution)
layer = SynthesisLayer(
w_dim=self.w_dim, is_torgb=is_torgb, is_critically_sampled=is_critically_sampled, use_fp16=use_fp16,
in_channels=int(channels[prev]), out_channels= int(channels[idx]),
in_size=int(sizes[prev]), out_size=int(sizes[idx]),
in_sampling_rate=int(sampling_rates[prev]), out_sampling_rate=int(sampling_rates[idx]),
in_cutoff=cutoffs[prev], out_cutoff=cutoffs[idx],
in_half_width=half_widths[prev], out_half_width=half_widths[idx],
use_sel=use_sel, sel_type=sel_type, label_nc=label_nc, low_rank=low_rank,
**layer_kwargs)
name = f'L{idx}_{layer.out_size[0]}_{layer.out_channels}'
setattr(self, name, layer)
self.layer_names.append(name)
def forward(self, ws, heatmap=None, **layer_kwargs):
misc.assert_shape(ws, [None, self.num_ws, self.w_dim])
ws = ws.to(torch.float32).unbind(dim=1)
# Execute layers.
x = self.input(ws[0])
for name, w in zip(self.layer_names, ws[1:]):
x = getattr(self, name)(x, w, heatmap, **layer_kwargs)
if self.output_scale != 1:
x = x * self.output_scale
# Ensure correct shape and dtype.
misc.assert_shape(x, [None, self.img_channels, self.img_resolution, self.img_resolution])
x = x.to(torch.float32)
return x
def extra_repr(self):
return '\n'.join([
f'w_dim={self.w_dim:d}, num_ws={self.num_ws:d},',
f'img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d},',
f'num_layers={self.num_layers:d}, num_critical={self.num_critical:d},',
f'margin_size={self.margin_size:d}, num_fp16_res={self.num_fp16_res:d}'])
#----------------------------------------------------------------------------
class Generator(torch.nn.Module):
def __init__(self,
z_dim, # Input latent (Z) dimensionality.
c_dim, # Conditioning label (C) dimensionality.
w_dim, # Intermediate latent (W) dimensionality.
img_resolution, # Output resolution.
img_channels, # Number of output color channels.
label_nc = None,
use_sel = False,
sel_type = False,
low_rank = None,
offset_scale = '0,0',
bound_len = 0.5,
wo_transform = False,
mapping_kwargs = {}, # Arguments for MappingNetwork.
**synthesis_kwargs, # Arguments for SynthesisNetwork.
):
super().__init__()
self.z_dim = z_dim
self.c_dim = c_dim
self.w_dim = w_dim
self.img_resolution = img_resolution
self.img_channels = img_channels
self.synthesis = SynthesisNetwork(w_dim=w_dim, img_resolution=img_resolution, img_channels=img_channels, label_nc=label_nc, use_sel=use_sel, sel_type=sel_type, low_rank=low_rank, offset_scale=offset_scale, bound_len=bound_len, wo_transform=wo_transform, **synthesis_kwargs)
self.num_ws = self.synthesis.num_ws
self.mapping = MappingNetwork(z_dim=z_dim, c_dim=c_dim, w_dim=w_dim, num_ws=self.num_ws, **mapping_kwargs)
def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, update_emas=False, heatmap=None, **synthesis_kwargs):
ws = self.mapping(z, c, truncation_psi=truncation_psi, truncation_cutoff=truncation_cutoff, update_emas=update_emas)
img = self.synthesis(ws, update_emas=update_emas, spatial_map=heatmap, **synthesis_kwargs)
return img
#----------------------------------------------------------------------------
|