File size: 21,905 Bytes
2f85de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
# python3.7
"""Contains the Inception V3 model, which is used for inference ONLY.

This file is mostly borrowed from `torchvision/models/inception.py`.

Inception model is widely used to compute FID or IS metric for evaluating
generative models. However, the pre-trained models from torchvision is slightly
different from the TensorFlow version

http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz

which is used by the official FID implementation

https://github.com/bioinf-jku/TTUR

In particular:

(1) The number of classes in TensorFlow model is 1008 instead of 1000.
(2) The avg_pool() layers in TensorFlow model does not include the padded zero.
(3) The last Inception E Block in TensorFlow model use max_pool() instead of
    avg_pool().

Hence, to align the evaluation results with those from TensorFlow
implementation, we modified the inception model to support both versions. Please
use `align_tf` argument to control the version.
"""

import warnings

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist

from utils.misc import download_url

__all__ = ['InceptionModel']

# pylint: disable=line-too-long

_MODEL_URL_SHA256 = {
    # This model is provided by `torchvision`, which is ported from TensorFlow.
    'torchvision_official': (
        'https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth',
        '1a9a5a14f40645a370184bd54f4e8e631351e71399112b43ad0294a79da290c8'  # hash sha256
    ),

    # This model is provided by https://github.com/mseitzer/pytorch-fid
    'tf_inception_v3': (
        'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth',
        '6726825d0af5f729cebd5821db510b11b1cfad8faad88a03f1befd49fb9129b2'  # hash sha256
    )
}


class InceptionModel(object):
    """Defines the Inception (V3) model.

    This is a static class, which is used to avoid this model to be built
    repeatedly. Consequently, this model is particularly used for inference,
    like computing FID. If training is required, please use the model from
    `torchvision.models` or implement by yourself.

    NOTE: The pre-trained model assumes the inputs to be with `RGB` channel
    order and pixel range [-1, 1], and will also resize the images to shape
    [299, 299] automatically. If your input is normalized by subtracting
    (0.485, 0.456, 0.406) and dividing (0.229, 0.224, 0.225), please use
    `transform_input` in the `forward()` function to un-normalize it.
    """
    models = dict()

    @staticmethod
    def build_model(align_tf=True):
        """Builds the model and load pre-trained weights.

        If `align_tf` is set as True, the model will predict 1008 classes, and
        the pre-trained weight from `https://github.com/mseitzer/pytorch-fid`
        will be loaded. Otherwise, the model will predict 1000 classes, and will
        load the model from `torchvision`.

        The built model supports following arguments when forwarding:

        - transform_input: Whether to transform the input back to pixel range
            (-1, 1). Please disable this argument if your input is already with
            pixel range (-1, 1). (default: False)
        - output_logits: Whether to output the categorical logits instead of
            features. (default: False)
        - remove_logits_bias: Whether to remove the bias when computing the
            logits. The official implementation removes the bias by default.
            Please refer to
            `https://github.com/openai/improved-gan/blob/master/inception_score/model.py`.
            (default: False)
        - output_predictions: Whether to output the final predictions, i.e.,
            `softmax(logits)`. (default: False)
        """
        if align_tf:
            num_classes = 1008
            model_source = 'tf_inception_v3'
        else:
            num_classes = 1000
            model_source = 'torchvision_official'

        fingerprint = model_source

        if fingerprint not in InceptionModel.models:
            # Build model.
            model = Inception3(num_classes=num_classes,
                               aux_logits=False,
                               init_weights=False,
                               align_tf=align_tf)

            # Download pre-trained weights.
            if dist.is_initialized() and dist.get_rank() != 0:
                dist.barrier()  # Download by chief.

            url, sha256 = _MODEL_URL_SHA256[model_source]
            filename = f'inception_model_{model_source}_{sha256}.pth'
            model_path, hash_check = download_url(url,
                                                  filename=filename,
                                                  sha256=sha256)
            state_dict = torch.load(model_path, map_location='cpu')
            if hash_check is False:
                warnings.warn(f'Hash check failed! The remote file from URL '
                              f'`{url}` may be changed, or the downloading is '
                              f'interrupted. The loaded inception model may '
                              f'have unexpected behavior.')

            if dist.is_initialized() and dist.get_rank() == 0:
                dist.barrier()  # Wait for other replicas.

            # Load weights.
            model.load_state_dict(state_dict, strict=False)
            del state_dict

            # For inference only.
            model.eval().requires_grad_(False).cuda()
            InceptionModel.models[fingerprint] = model

        return InceptionModel.models[fingerprint]

# pylint: disable=missing-function-docstring
# pylint: disable=missing-class-docstring
# pylint: disable=super-with-arguments
# pylint: disable=consider-merging-isinstance
# pylint: disable=import-outside-toplevel
# pylint: disable=no-else-return

class Inception3(nn.Module):

    def __init__(self, num_classes=1000, aux_logits=True, inception_blocks=None,
                 init_weights=True, align_tf=True):
        super(Inception3, self).__init__()
        if inception_blocks is None:
            inception_blocks = [
                BasicConv2d, InceptionA, InceptionB, InceptionC,
                InceptionD, InceptionE, InceptionAux
            ]
        assert len(inception_blocks) == 7
        conv_block = inception_blocks[0]
        inception_a = inception_blocks[1]
        inception_b = inception_blocks[2]
        inception_c = inception_blocks[3]
        inception_d = inception_blocks[4]
        inception_e = inception_blocks[5]
        inception_aux = inception_blocks[6]

        self.aux_logits = aux_logits
        self.align_tf = align_tf
        self.Conv2d_1a_3x3 = conv_block(3, 32, kernel_size=3, stride=2)
        self.Conv2d_2a_3x3 = conv_block(32, 32, kernel_size=3)
        self.Conv2d_2b_3x3 = conv_block(32, 64, kernel_size=3, padding=1)
        self.Conv2d_3b_1x1 = conv_block(64, 80, kernel_size=1)
        self.Conv2d_4a_3x3 = conv_block(80, 192, kernel_size=3)
        self.Mixed_5b = inception_a(192, pool_features=32, align_tf=self.align_tf)
        self.Mixed_5c = inception_a(256, pool_features=64, align_tf=self.align_tf)
        self.Mixed_5d = inception_a(288, pool_features=64, align_tf=self.align_tf)
        self.Mixed_6a = inception_b(288)
        self.Mixed_6b = inception_c(768, channels_7x7=128, align_tf=self.align_tf)
        self.Mixed_6c = inception_c(768, channels_7x7=160, align_tf=self.align_tf)
        self.Mixed_6d = inception_c(768, channels_7x7=160, align_tf=self.align_tf)
        self.Mixed_6e = inception_c(768, channels_7x7=192, align_tf=self.align_tf)
        if aux_logits:
            self.AuxLogits = inception_aux(768, num_classes)
        self.Mixed_7a = inception_d(768)
        self.Mixed_7b = inception_e(1280, align_tf=self.align_tf)
        self.Mixed_7c = inception_e(2048, use_max_pool=self.align_tf)
        self.fc = nn.Linear(2048, num_classes)
        if init_weights:
            for m in self.modules():
                if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
                    import scipy.stats as stats
                    stddev = m.stddev if hasattr(m, 'stddev') else 0.1
                    X = stats.truncnorm(-2, 2, scale=stddev)
                    values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype)
                    values = values.view(m.weight.size())
                    with torch.no_grad():
                        m.weight.copy_(values)
                elif isinstance(m, nn.BatchNorm2d):
                    nn.init.constant_(m.weight, 1)
                    nn.init.constant_(m.bias, 0)

    @staticmethod
    def _transform_input(x, transform_input=False):
        if transform_input:
            x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
            x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
            x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
            x = torch.cat((x_ch0, x_ch1, x_ch2), 1)
        return x

    def _forward(self,
                 x,
                 output_logits=False,
                 remove_logits_bias=False,
                 output_predictions=False):
        # Upsample if necessary.
        if x.shape[2] != 299 or x.shape[3] != 299:
            if self.align_tf:
                theta = torch.eye(2, 3).to(x)
                theta[0, 2] += theta[0, 0] / x.shape[3] - theta[0, 0] / 299
                theta[1, 2] += theta[1, 1] / x.shape[2] - theta[1, 1] / 299
                theta = theta.unsqueeze(0).repeat(x.shape[0], 1, 1)
                grid = F.affine_grid(theta,
                                     size=(x.shape[0], x.shape[1], 299, 299),
                                     align_corners=False)
                x = F.grid_sample(x, grid,
                                  mode='bilinear',
                                  padding_mode='border',
                                  align_corners=False)
            else:
                x = F.interpolate(
                    x, size=(299, 299), mode='bilinear', align_corners=False)
        if x.shape[1] == 1:
            x = x.repeat((1, 3, 1, 1))

        if self.align_tf:
            x = (x * 127.5 + 127.5 - 128) / 128

        # N x 3 x 299 x 299
        x = self.Conv2d_1a_3x3(x)
        # N x 32 x 149 x 149
        x = self.Conv2d_2a_3x3(x)
        # N x 32 x 147 x 147
        x = self.Conv2d_2b_3x3(x)
        # N x 64 x 147 x 147
        x = F.max_pool2d(x, kernel_size=3, stride=2)
        # N x 64 x 73 x 73
        x = self.Conv2d_3b_1x1(x)
        # N x 80 x 73 x 73
        x = self.Conv2d_4a_3x3(x)
        # N x 192 x 71 x 71
        x = F.max_pool2d(x, kernel_size=3, stride=2)
        # N x 192 x 35 x 35
        x = self.Mixed_5b(x)
        # N x 256 x 35 x 35
        x = self.Mixed_5c(x)
        # N x 288 x 35 x 35
        x = self.Mixed_5d(x)
        # N x 288 x 35 x 35
        x = self.Mixed_6a(x)
        # N x 768 x 17 x 17
        x = self.Mixed_6b(x)
        # N x 768 x 17 x 17
        x = self.Mixed_6c(x)
        # N x 768 x 17 x 17
        x = self.Mixed_6d(x)
        # N x 768 x 17 x 17
        x = self.Mixed_6e(x)
        # N x 768 x 17 x 17
        if self.training and self.aux_logits:
            aux = self.AuxLogits(x)
        else:
            aux = None
        # N x 768 x 17 x 17
        x = self.Mixed_7a(x)
        # N x 1280 x 8 x 8
        x = self.Mixed_7b(x)
        # N x 2048 x 8 x 8
        x = self.Mixed_7c(x)
        # N x 2048 x 8 x 8
        # Adaptive average pooling
        x = F.adaptive_avg_pool2d(x, (1, 1))
        # N x 2048 x 1 x 1
        x = F.dropout(x, training=self.training)
        # N x 2048 x 1 x 1
        x = torch.flatten(x, 1)
        # N x 2048
        if output_logits or output_predictions:
            x = self.fc(x)
            # N x 1000 (num_classes)
            if remove_logits_bias:
                x = x - self.fc.bias.view(1, -1)
            if output_predictions:
                x = F.softmax(x, dim=1)
        return x, aux

    def forward(self,
                x,
                transform_input=False,
                output_logits=False,
                remove_logits_bias=False,
                output_predictions=False):
        x = self._transform_input(x, transform_input)
        x, aux = self._forward(
            x, output_logits, remove_logits_bias, output_predictions)
        if self.training and self.aux_logits:
            return x, aux
        else:
            return x


class InceptionA(nn.Module):

    def __init__(self, in_channels, pool_features, conv_block=None, align_tf=False):
        super(InceptionA, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch1x1 = conv_block(in_channels, 64, kernel_size=1)

        self.branch5x5_1 = conv_block(in_channels, 48, kernel_size=1)
        self.branch5x5_2 = conv_block(48, 64, kernel_size=5, padding=2)

        self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
        self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
        self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, padding=1)

        self.branch_pool = conv_block(in_channels, pool_features, kernel_size=1)
        self.pool_include_padding = not align_tf

    def _forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
                                   count_include_pad=self.pool_include_padding)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
        return outputs

    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)


class InceptionB(nn.Module):

    def __init__(self, in_channels, conv_block=None):
        super(InceptionB, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch3x3 = conv_block(in_channels, 384, kernel_size=3, stride=2)

        self.branch3x3dbl_1 = conv_block(in_channels, 64, kernel_size=1)
        self.branch3x3dbl_2 = conv_block(64, 96, kernel_size=3, padding=1)
        self.branch3x3dbl_3 = conv_block(96, 96, kernel_size=3, stride=2)

    def _forward(self, x):
        branch3x3 = self.branch3x3(x)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)

        branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)

        outputs = [branch3x3, branch3x3dbl, branch_pool]
        return outputs

    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)


class InceptionC(nn.Module):

    def __init__(self, in_channels, channels_7x7, conv_block=None, align_tf=False):
        super(InceptionC, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch1x1 = conv_block(in_channels, 192, kernel_size=1)

        c7 = channels_7x7
        self.branch7x7_1 = conv_block(in_channels, c7, kernel_size=1)
        self.branch7x7_2 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7_3 = conv_block(c7, 192, kernel_size=(7, 1), padding=(3, 0))

        self.branch7x7dbl_1 = conv_block(in_channels, c7, kernel_size=1)
        self.branch7x7dbl_2 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7dbl_3 = conv_block(c7, c7, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7dbl_4 = conv_block(c7, c7, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7dbl_5 = conv_block(c7, 192, kernel_size=(1, 7), padding=(0, 3))

        self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
        self.pool_include_padding = not align_tf

    def _forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch7x7 = self.branch7x7_1(x)
        branch7x7 = self.branch7x7_2(branch7x7)
        branch7x7 = self.branch7x7_3(branch7x7)

        branch7x7dbl = self.branch7x7dbl_1(x)
        branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
        branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)

        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
                                   count_include_pad=self.pool_include_padding)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
        return outputs

    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)


class InceptionD(nn.Module):

    def __init__(self, in_channels, conv_block=None):
        super(InceptionD, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch3x3_1 = conv_block(in_channels, 192, kernel_size=1)
        self.branch3x3_2 = conv_block(192, 320, kernel_size=3, stride=2)

        self.branch7x7x3_1 = conv_block(in_channels, 192, kernel_size=1)
        self.branch7x7x3_2 = conv_block(192, 192, kernel_size=(1, 7), padding=(0, 3))
        self.branch7x7x3_3 = conv_block(192, 192, kernel_size=(7, 1), padding=(3, 0))
        self.branch7x7x3_4 = conv_block(192, 192, kernel_size=3, stride=2)

    def _forward(self, x):
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)

        branch7x7x3 = self.branch7x7x3_1(x)
        branch7x7x3 = self.branch7x7x3_2(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_3(branch7x7x3)
        branch7x7x3 = self.branch7x7x3_4(branch7x7x3)

        branch_pool = F.max_pool2d(x, kernel_size=3, stride=2)
        outputs = [branch3x3, branch7x7x3, branch_pool]
        return outputs

    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)


class InceptionE(nn.Module):

    def __init__(self, in_channels, conv_block=None, align_tf=False, use_max_pool=False):
        super(InceptionE, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.branch1x1 = conv_block(in_channels, 320, kernel_size=1)

        self.branch3x3_1 = conv_block(in_channels, 384, kernel_size=1)
        self.branch3x3_2a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1))
        self.branch3x3_2b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))

        self.branch3x3dbl_1 = conv_block(in_channels, 448, kernel_size=1)
        self.branch3x3dbl_2 = conv_block(448, 384, kernel_size=3, padding=1)
        self.branch3x3dbl_3a = conv_block(384, 384, kernel_size=(1, 3), padding=(0, 1))
        self.branch3x3dbl_3b = conv_block(384, 384, kernel_size=(3, 1), padding=(1, 0))

        self.branch_pool = conv_block(in_channels, 192, kernel_size=1)
        self.pool_include_padding = not align_tf
        self.use_max_pool = use_max_pool

    def _forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = [
            self.branch3x3_2a(branch3x3),
            self.branch3x3_2b(branch3x3),
        ]
        branch3x3 = torch.cat(branch3x3, 1)

        branch3x3dbl = self.branch3x3dbl_1(x)
        branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
        branch3x3dbl = [
            self.branch3x3dbl_3a(branch3x3dbl),
            self.branch3x3dbl_3b(branch3x3dbl),
        ]
        branch3x3dbl = torch.cat(branch3x3dbl, 1)

        if self.use_max_pool:
            branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1)
        else:
            branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
                                       count_include_pad=self.pool_include_padding)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
        return outputs

    def forward(self, x):
        outputs = self._forward(x)
        return torch.cat(outputs, 1)


class InceptionAux(nn.Module):

    def __init__(self, in_channels, num_classes, conv_block=None):
        super(InceptionAux, self).__init__()
        if conv_block is None:
            conv_block = BasicConv2d
        self.conv0 = conv_block(in_channels, 128, kernel_size=1)
        self.conv1 = conv_block(128, 768, kernel_size=5)
        self.conv1.stddev = 0.01
        self.fc = nn.Linear(768, num_classes)
        self.fc.stddev = 0.001

    def forward(self, x):
        # N x 768 x 17 x 17
        x = F.avg_pool2d(x, kernel_size=5, stride=3)
        # N x 768 x 5 x 5
        x = self.conv0(x)
        # N x 128 x 5 x 5
        x = self.conv1(x)
        # N x 768 x 1 x 1
        # Adaptive average pooling
        x = F.adaptive_avg_pool2d(x, (1, 1))
        # N x 768 x 1 x 1
        x = torch.flatten(x, 1)
        # N x 768
        x = self.fc(x)
        # N x 1000
        return x


class BasicConv2d(nn.Module):

    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
        self.bn = nn.BatchNorm2d(out_channels, eps=0.001)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return F.relu(x, inplace=True)

# pylint: enable=line-too-long
# pylint: enable=missing-function-docstring
# pylint: enable=missing-class-docstring
# pylint: enable=super-with-arguments
# pylint: enable=consider-merging-isinstance
# pylint: enable=import-outside-toplevel
# pylint: enable=no-else-return