File size: 31,766 Bytes
2f85de4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 |
# python3.8
"""Contains the implementation of generator described in VolumeGAN.
Paper: https://arxiv.org/pdf/2112.10759.pdf
"""
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from .stylegan2_generator import MappingNetwork
from .stylegan2_generator import ModulateConvLayer
from .stylegan2_generator import ConvLayer
from .stylegan2_generator import DenseLayer
from third_party.stylegan2_official_ops import upfirdn2d
from .rendering import Renderer
from .rendering import FeatureExtractor
from .utils.ops import all_gather
class VolumeGANGenerator(nn.Module):
"""Defines the generator network in VoumeGAN."""
def __init__(
self,
# Settings for mapping network.
z_dim=512,
w_dim=512,
repeat_w=True,
normalize_z=True,
mapping_layers=8,
mapping_fmaps=512,
mapping_use_wscale=True,
mapping_wscale_gain=1.0,
mapping_lr_mul=0.01,
# Settings for conditional generation.
label_dim=0,
embedding_dim=512,
embedding_bias=True,
embedding_use_wscale=True,
embedding_wscale_gian=1.0,
embedding_lr_mul=1.0,
normalize_embedding=True,
normalize_embedding_latent=False,
# Settings for post neural renderer network.
resolution=-1,
nerf_res=32,
image_channels=3,
final_tanh=False,
demodulate=True,
use_wscale=True,
wscale_gain=1.0,
lr_mul=1.0,
noise_type='spatial',
fmaps_base=32 << 10,
fmaps_max=512,
filter_kernel=(1, 3, 3, 1),
conv_clamp=None,
eps=1e-8,
rgb_init_res_out=True,
# Settings for feature volume.
fv_cfg=dict(feat_res=32,
init_res=4,
base_channels=256,
output_channels=32,
w_dim=512),
# Settings for position encoder.
embed_cfg=dict(input_dim=3, max_freq_log2=10 - 1, N_freqs=10),
# Settings for MLP network.
fg_cfg=dict(num_layers=4, hidden_dim=256, activation_type='lrelu'),
bg_cfg=None,
out_dim=512,
# Settings for rendering.
rendering_kwargs={}):
super().__init__()
self.z_dim = z_dim
self.w_dim = w_dim
self.repeat_w = repeat_w
self.normalize_z = normalize_z
self.mapping_layers = mapping_layers
self.mapping_fmaps = mapping_fmaps
self.mapping_use_wscale = mapping_use_wscale
self.mapping_wscale_gain = mapping_wscale_gain
self.mapping_lr_mul = mapping_lr_mul
self.latent_dim = (z_dim,)
self.label_size = label_dim
self.label_dim = label_dim
self.embedding_dim = embedding_dim
self.embedding_bias = embedding_bias
self.embedding_use_wscale = embedding_use_wscale
self.embedding_wscale_gain = embedding_wscale_gian
self.embedding_lr_mul = embedding_lr_mul
self.normalize_embedding = normalize_embedding
self.normalize_embedding_latent = normalize_embedding_latent
self.resolution = resolution
self.nerf_res = nerf_res
self.image_channels = image_channels
self.final_tanh = final_tanh
self.demodulate = demodulate
self.use_wscale = use_wscale
self.wscale_gain = wscale_gain
self.lr_mul = lr_mul
self.noise_type = noise_type.lower()
self.fmaps_base = fmaps_base
self.fmaps_max = fmaps_max
self.filter_kernel = filter_kernel
self.conv_clamp = conv_clamp
self.eps = eps
self.num_nerf_layers = fg_cfg['num_layers']
self.num_cnn_layers = int(np.log2(resolution // nerf_res * 2)) * 2
self.num_layers = self.num_nerf_layers + self.num_cnn_layers
# Set up `w_avg` for truncation trick.
if self.repeat_w:
self.register_buffer('w_avg', torch.zeros(w_dim))
else:
self.register_buffer('w_avg', torch.zeros(self.num_layers * w_dim))
# Set up the mapping network.
self.mapping = MappingNetwork(
input_dim=z_dim,
output_dim=w_dim,
num_outputs=self.num_layers,
repeat_output=repeat_w,
normalize_input=normalize_z,
num_layers=mapping_layers,
hidden_dim=mapping_fmaps,
use_wscale=mapping_use_wscale,
wscale_gain=mapping_wscale_gain,
lr_mul=mapping_lr_mul,
label_dim=label_dim,
embedding_dim=embedding_dim,
embedding_bias=embedding_bias,
embedding_use_wscale=embedding_use_wscale,
embedding_wscale_gian=embedding_wscale_gian,
embedding_lr_mul=embedding_lr_mul,
normalize_embedding=normalize_embedding,
normalize_embedding_latent=normalize_embedding_latent,
eps=eps)
# Set up the overall renderer.
self.renderer = Renderer()
# Set up the reference representation generator.
self.ref_representation_generator = FeatureVolume(**fv_cfg)
# Set up the position encoder.
self.position_encoder = PositionEncoder(**embed_cfg)
# Set up the feature extractor.
self.feature_extractor = FeatureExtractor(ref_mode='feature_volume')
# Set up the post module in the feature extractor.
self.post_module = NeRFMLPNetwork(input_dim=self.position_encoder.out_dim +
fv_cfg['output_channels'],
fg_cfg=fg_cfg,
bg_cfg=bg_cfg)
# Set up the fully-connected layer head.
self.fc_head = FCHead(fg_cfg=fg_cfg, bg_cfg=bg_cfg, out_dim=out_dim)
# Set up the post neural renderer.
self.post_neural_renderer = PostNeuralRendererNetwork(
resolution=resolution,
init_res=nerf_res,
w_dim=w_dim,
image_channels=image_channels,
final_tanh=final_tanh,
demodulate=demodulate,
use_wscale=use_wscale,
wscale_gain=wscale_gain,
lr_mul=lr_mul,
noise_type=noise_type,
fmaps_base=fmaps_base,
filter_kernel=filter_kernel,
fmaps_max=fmaps_max,
conv_clamp=conv_clamp,
eps=eps,
rgb_init_res_out=rgb_init_res_out)
# Set up some rendering related arguments.
self.rendering_kwargs = rendering_kwargs
# Set up vars' mapping from current implementation to the official
# implementation. Note that this is only for debug.
self.cur_to_official_part_mapping = {
'w_avg': 'w_avg',
'mapping': 'mapping',
'ref_representation_generator': 'nerfmlp.fv',
'post_module.fg_mlp': 'nerfmlp.fg_mlps',
'fc_head.fg_sigma_head': 'nerfmlp.fg_density',
'fc_head.fg_rgb_head': 'nerfmlp.fg_color',
'post_neural_renderer': 'synthesis'
}
# Set debug mode only when debugging.
if self.rendering_kwargs.get('debug_mode', False):
self.set_weights_from_official(
rendering_kwargs.get('cur_state', None),
rendering_kwargs.get('official_state', None))
def get_cur_to_official_full_mapping(self, keys_cur):
cur_to_official_full_mapping = {}
for key, val in self.cur_to_official_part_mapping.items():
for key_cur_full in keys_cur:
if key in key_cur_full:
sub_key = key_cur_full.replace(key, '')
cur_to_official_full_mapping[key + sub_key] = val + sub_key
return cur_to_official_full_mapping
def set_weights_from_official(self, cur_state, official_state):
keys_cur = cur_state['models']['generator_smooth'].keys()
self.cur_to_official_full_mapping = (
self.get_cur_to_official_full_mapping(keys_cur))
for name, param in self.named_parameters():
param.data = (official_state['models']['generator_smooth'][
self.cur_to_official_full_mapping[name]])
def forward(
self,
z,
label=None,
lod=None,
w_moving_decay=None,
sync_w_avg=False,
style_mixing_prob=None,
trunc_psi=None,
trunc_layers=None,
noise_mode='const',
fused_modulate=False,
impl='cuda',
fp16_res=None,
):
mapping_results = self.mapping(z, label, impl=impl)
w = mapping_results['w']
lod = self.post_neural_renderer.lod.item() if lod is None else lod
if self.training and w_moving_decay is not None:
if sync_w_avg:
batch_w_avg = all_gather(w.detach()).mean(dim=0)
else:
batch_w_avg = w.detach().mean(dim=0)
self.w_avg.copy_(batch_w_avg.lerp(self.w_avg, w_moving_decay))
wp = mapping_results['wp']
if self.training and style_mixing_prob is not None:
if np.random.uniform() < style_mixing_prob:
new_z = torch.randn_like(z)
new_wp = self.mapping(new_z, label, impl=impl)['wp']
current_layers = self.num_layers
if current_layers > self.num_nerf_layers:
mixing_cutoff = np.random.randint(self.num_nerf_layers,
current_layers)
wp[:, mixing_cutoff:] = new_wp[:, mixing_cutoff:]
if not self.training:
trunc_psi = 1.0 if trunc_psi is None else trunc_psi
trunc_layers = 0 if trunc_layers is None else trunc_layers
if trunc_psi < 1.0 and trunc_layers > 0:
w_avg = self.w_avg.reshape(1, -1, self.w_dim)[:, :trunc_layers]
wp[:, :trunc_layers] = w_avg.lerp(
wp[:, :trunc_layers], trunc_psi)
nerf_w = wp[:,:self.num_nerf_layers]
cnn_w = wp[:,self.num_nerf_layers:]
feature_volume = self.ref_representation_generator(nerf_w)
rendering_results = self.renderer(
wp=nerf_w,
feature_extractor=self.feature_extractor,
rendering_options=self.rendering_kwargs,
position_encoder=self.position_encoder,
ref_representation=feature_volume,
post_module=self.post_module,
fc_head=self.fc_head)
feature2d = rendering_results['composite_rgb']
feature2d = feature2d.reshape(feature2d.shape[0], self.nerf_res,
self.nerf_res, -1).permute(0, 3, 1, 2)
final_results = self.post_neural_renderer(
feature2d,
cnn_w,
lod=None,
noise_mode=noise_mode,
fused_modulate=fused_modulate,
impl=impl,
fp16_res=fp16_res)
return {**mapping_results, **final_results}
class PositionEncoder(nn.Module):
"""Implements the class for positional encoding."""
def __init__(self,
input_dim,
max_freq_log2,
N_freqs,
log_sampling=True,
include_input=True,
periodic_fns=(torch.sin, torch.cos)):
"""Initializes with basic settings.
Args:
input_dim: Dimension of input to be embedded.
max_freq_log2: `log2` of max freq; min freq is 1 by default.
N_freqs: Number of frequency bands.
log_sampling: If True, frequency bands are linerly sampled in
log-space.
include_input: If True, raw input is included in the embedding.
Defaults to True.
periodic_fns: Periodic functions used to embed input.
Defaults to (torch.sin, torch.cos).
"""
super().__init__()
self.input_dim = input_dim
self.include_input = include_input
self.periodic_fns = periodic_fns
self.out_dim = 0
if self.include_input:
self.out_dim += self.input_dim
self.out_dim += self.input_dim * N_freqs * len(self.periodic_fns)
if log_sampling:
self.freq_bands = 2.**torch.linspace(0., max_freq_log2, N_freqs)
else:
self.freq_bands = torch.linspace(2.**0., 2.**max_freq_log2,
N_freqs)
self.freq_bands = self.freq_bands.numpy().tolist()
def forward(self, input):
assert (input.shape[-1] == self.input_dim)
out = []
if self.include_input:
out.append(input)
for i in range(len(self.freq_bands)):
freq = self.freq_bands[i]
for p_fn in self.periodic_fns:
out.append(p_fn(input * freq))
out = torch.cat(out, dim=-1)
assert (out.shape[-1] == self.out_dim)
return out
class FeatureVolume(nn.Module):
"""Defines feature volume in VolumeGAN."""
def __init__(self,
feat_res=32,
init_res=4,
base_channels=256,
output_channels=32,
w_dim=512,
**kwargs):
super().__init__()
self.num_stages = int(np.log2(feat_res // init_res)) + 1
self.const = nn.Parameter(
torch.ones(1, base_channels, init_res, init_res, init_res))
inplanes = base_channels
outplanes = base_channels
self.stage_channels = []
for i in range(self.num_stages):
conv = nn.Conv3d(inplanes,
outplanes,
kernel_size=(3, 3, 3),
padding=(1, 1, 1))
self.stage_channels.append(outplanes)
self.add_module(f'layer{i}', conv)
instance_norm = InstanceNormLayer(num_features=outplanes,
affine=False)
self.add_module(f'instance_norm{i}', instance_norm)
inplanes = outplanes
outplanes = max(outplanes // 2, output_channels)
if i == self.num_stages - 1:
outplanes = output_channels
self.mapping_network = nn.Linear(w_dim, sum(self.stage_channels) * 2)
self.mapping_network.apply(kaiming_leaky_init)
with torch.no_grad():
self.mapping_network.weight *= 0.25
self.upsample = UpsamplingLayer()
self.lrelu = nn.LeakyReLU(negative_slope=0.2)
def forward(self, w, **kwargs):
if w.ndim == 3:
_w = w[:, 0]
else:
_w = w
scale_shifts = self.mapping_network(_w)
scales = scale_shifts[..., :scale_shifts.shape[-1] // 2]
shifts = scale_shifts[..., scale_shifts.shape[-1] // 2:]
x = self.const.repeat(w.shape[0], 1, 1, 1, 1)
for idx in range(self.num_stages):
if idx != 0:
x = self.upsample(x)
conv_layer = self.__getattr__(f'layer{idx}')
x = conv_layer(x)
instance_norm = self.__getattr__(f'instance_norm{idx}')
scale = scales[:,
sum(self.stage_channels[:idx]
):sum(self.stage_channels[:idx + 1])]
shift = shifts[:,
sum(self.stage_channels[:idx]
):sum(self.stage_channels[:idx + 1])]
scale = scale.view(scale.shape + (1, 1, 1))
shift = shift.view(shift.shape + (1, 1, 1))
x = instance_norm(x, weight=scale, bias=shift)
x = self.lrelu(x)
return x
def kaiming_leaky_init(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
torch.nn.init.kaiming_normal_(m.weight,
a=0.2,
mode='fan_in',
nonlinearity='leaky_relu')
class InstanceNormLayer(nn.Module):
"""Implements instance normalization layer."""
def __init__(self, num_features, epsilon=1e-8, affine=False):
super().__init__()
self.eps = epsilon
self.affine = affine
if self.affine:
self.weight = nn.Parameter(torch.Tensor(1, num_features, 1, 1, 1))
self.bias = nn.Parameter(torch.Tensor(1, num_features, 1, 1, 1))
self.weight.data.uniform_()
self.bias.data.zero_()
def forward(self, x, weight=None, bias=None):
x = x - torch.mean(x, dim=[2, 3, 4], keepdim=True)
norm = torch.sqrt(
torch.mean(x**2, dim=[2, 3, 4], keepdim=True) + self.eps)
x = x / norm
isnot_input_none = weight is not None and bias is not None
assert (isnot_input_none and not self.affine) or (not isnot_input_none
and self.affine)
if self.affine:
x = x * self.weight + self.bias
else:
x = x * weight + bias
return x
class UpsamplingLayer(nn.Module):
def __init__(self, scale_factor=2):
super().__init__()
self.scale_factor = scale_factor
def forward(self, x):
if self.scale_factor <= 1:
return x
return F.interpolate(x, scale_factor=self.scale_factor, mode='nearest')
class NeRFMLPNetwork(nn.Module):
"""Defines class of MLP Network described in VolumeGAN.
Basically, this class takes in latent codes and point coodinates as input,
and outputs features of each point, which is followed by two fully-connected
layer heads.
"""
def __init__(self, input_dim, fg_cfg, bg_cfg=None):
super().__init__()
self.fg_mlp = self.build_mlp(input_dim=input_dim, **fg_cfg)
def build_mlp(self, input_dim, num_layers, hidden_dim, activation_type,
**kwargs):
"""Implements function to build the `MLP`.
Note that here the `MLP` network is consists of a series of
`ModulateConvLayer` with `kernel_size=1` to simulate fully-connected
layer. Typically, the input's shape of convolutional layers is
`[N, C, H, W]`. And the input's shape is `[N, C, R*K, 1]` here, which
aims to keep consistent with `MLP`.
"""
default_conv_cfg = dict(resolution=32,
w_dim=512,
kernel_size=1,
add_bias=True,
scale_factor=1,
filter_kernel=None,
demodulate=True,
use_wscale=True,
wscale_gain=1,
lr_mul=1,
noise_type='none',
conv_clamp=None,
eps=1e-8)
mlp_list = nn.ModuleList()
in_ch = input_dim
out_ch = hidden_dim
for _ in range(num_layers):
mlp = ModulateConvLayer(in_channels=in_ch,
out_channels=out_ch,
activation_type=activation_type,
**default_conv_cfg)
mlp_list.append(mlp)
in_ch = out_ch
out_ch = hidden_dim
return mlp_list
def forward(self,
pre_point_features,
wp,
points_encoding=None,
fused_modulate=False,
impl='cuda'):
N, C, R_K, _ = points_encoding.shape
x = torch.cat([pre_point_features, points_encoding], dim=1)
for idx, mlp in enumerate(self.fg_mlp):
if wp.ndim == 3:
_w = wp[:, idx]
else:
_w = wp
x, _ = mlp(x, _w, fused_modulate=fused_modulate, impl=impl)
return x # x's shape: [N, C, R*K, 1]
class FCHead(nn.Module):
"""Defines fully-connected layer head in VolumeGAN to decode `feature` into
`sigma` and `rgb`."""
def __init__(self, fg_cfg, bg_cfg=None, out_dim=512):
super().__init__()
self.fg_sigma_head = DenseLayer(in_channels=fg_cfg['hidden_dim'],
out_channels=1,
add_bias=True,
init_bias=0.0,
use_wscale=True,
wscale_gain=1,
lr_mul=1,
activation_type='linear')
self.fg_rgb_head = DenseLayer(in_channels=fg_cfg['hidden_dim'],
out_channels=out_dim,
add_bias=True,
init_bias=0.0,
use_wscale=True,
wscale_gain=1,
lr_mul=1,
activation_type='linear')
def forward(self, post_point_features, wp=None, dirs=None):
post_point_features = rearrange(
post_point_features, 'N C (R_K) 1 -> (N R_K) C').contiguous()
fg_sigma = self.fg_sigma_head(post_point_features)
fg_rgb = self.fg_rgb_head(post_point_features)
results = {'sigma': fg_sigma, 'rgb': fg_rgb}
return results
class PostNeuralRendererNetwork(nn.Module):
"""Implements the neural renderer in VolumeGAN to render high-resolution
images.
Basically, this network executes several convolutional layers in sequence.
"""
def __init__(
self,
resolution,
init_res,
w_dim,
image_channels,
final_tanh,
demodulate,
use_wscale,
wscale_gain,
lr_mul,
noise_type,
fmaps_base,
fmaps_max,
filter_kernel,
conv_clamp,
eps,
rgb_init_res_out=False,
):
super().__init__()
self.init_res = init_res
self.init_res_log2 = int(np.log2(init_res))
self.resolution = resolution
self.final_res_log2 = int(np.log2(resolution))
self.w_dim = w_dim
self.image_channels = image_channels
self.final_tanh = final_tanh
self.demodulate = demodulate
self.use_wscale = use_wscale
self.wscale_gain = wscale_gain
self.lr_mul = lr_mul
self.noise_type = noise_type.lower()
self.fmaps_base = fmaps_base
self.fmaps_max = fmaps_max
self.filter_kernel = filter_kernel
self.conv_clamp = conv_clamp
self.eps = eps
self.rgb_init_res_out = rgb_init_res_out
self.num_layers = (self.final_res_log2 - self.init_res_log2 + 1) * 2
self.register_buffer('lod', torch.zeros(()))
for res_log2 in range(self.init_res_log2, self.final_res_log2 + 1):
res = 2**res_log2
in_channels = self.get_nf(res // 2)
out_channels = self.get_nf(res)
block_idx = res_log2 - self.init_res_log2
# Early layer.
if res > init_res:
layer_name = f'layer{2 * block_idx - 1}'
self.add_module(
layer_name,
ModulateConvLayer(in_channels=in_channels,
out_channels=out_channels,
resolution=res,
w_dim=w_dim,
kernel_size=1,
add_bias=True,
scale_factor=2,
filter_kernel=filter_kernel,
demodulate=demodulate,
use_wscale=use_wscale,
wscale_gain=wscale_gain,
lr_mul=lr_mul,
noise_type=noise_type,
activation_type='lrelu',
conv_clamp=conv_clamp,
eps=eps))
if block_idx == 0:
if self.rgb_init_res_out:
self.rgb_init_res = ConvLayer(
in_channels=out_channels,
out_channels=image_channels,
kernel_size=1,
add_bias=True,
scale_factor=1,
filter_kernel=None,
use_wscale=use_wscale,
wscale_gain=wscale_gain,
lr_mul=lr_mul,
activation_type='linear',
conv_clamp=conv_clamp,
)
continue
# Second layer (kernel 1x1) without upsampling.
layer_name = f'layer{2 * block_idx}'
self.add_module(
layer_name,
ModulateConvLayer(in_channels=out_channels,
out_channels=out_channels,
resolution=res,
w_dim=w_dim,
kernel_size=1,
add_bias=True,
scale_factor=1,
filter_kernel=None,
demodulate=demodulate,
use_wscale=use_wscale,
wscale_gain=wscale_gain,
lr_mul=lr_mul,
noise_type=noise_type,
activation_type='lrelu',
conv_clamp=conv_clamp,
eps=eps))
# Output convolution layer for each resolution (if needed).
layer_name = f'output{block_idx}'
self.add_module(
layer_name,
ModulateConvLayer(in_channels=out_channels,
out_channels=image_channels,
resolution=res,
w_dim=w_dim,
kernel_size=1,
add_bias=True,
scale_factor=1,
filter_kernel=None,
demodulate=False,
use_wscale=use_wscale,
wscale_gain=wscale_gain,
lr_mul=lr_mul,
noise_type='none',
activation_type='linear',
conv_clamp=conv_clamp,
eps=eps))
# Used for upsampling output images for each resolution block for sum.
self.register_buffer('filter', upfirdn2d.setup_filter(filter_kernel))
def get_nf(self, res):
"""Gets number of feature maps according to current resolution."""
return min(self.fmaps_base // res, self.fmaps_max)
def set_space_of_latent(self, space_of_latent):
"""Sets the space to which the latent code belong.
Args:
space_of_latent: The space to which the latent code belong. Case
insensitive. Support `W` and `Y`.
"""
space_of_latent = space_of_latent.upper()
for module in self.modules():
if isinstance(module, ModulateConvLayer):
setattr(module, 'space_of_latent', space_of_latent)
def forward(self,
x,
wp,
lod=None,
noise_mode='const',
fused_modulate=False,
impl='cuda',
fp16_res=None,
nerf_out=False):
lod = self.lod.item() if lod is None else lod
results = {}
# Cast to `torch.float16` if needed.
if fp16_res is not None and self.init_res >= fp16_res:
x = x.to(torch.float16)
for res_log2 in range(self.init_res_log2, self.final_res_log2 + 1):
cur_lod = self.final_res_log2 - res_log2
block_idx = res_log2 - self.init_res_log2
layer_idxs = [2 * block_idx - 1, 2 *
block_idx] if block_idx > 0 else [
2 * block_idx,
]
# determine forward until cur resolution
if lod < cur_lod + 1:
for layer_idx in layer_idxs:
if layer_idx == 0:
# image = x[:,:3]
if self.rgb_init_res_out:
cur_image = self.rgb_init_res(x,
runtime_gain=1,
impl=impl)
else:
cur_image = x[:, :3]
continue
layer = getattr(self, f'layer{layer_idx}')
x, style = layer(
x,
wp[:, layer_idx],
noise_mode=noise_mode,
fused_modulate=fused_modulate,
impl=impl,
)
results[f'style{layer_idx}'] = style
if layer_idx % 2 == 0:
output_layer = getattr(self, f'output{layer_idx // 2}')
y, style = output_layer(
x,
wp[:, layer_idx + 1],
fused_modulate=fused_modulate,
impl=impl,
)
results[f'output_style{layer_idx // 2}'] = style
if layer_idx == 0:
cur_image = y.to(torch.float32)
else:
if not nerf_out:
cur_image = y.to(
torch.float32) + upfirdn2d.upsample2d(
cur_image, self.filter, impl=impl)
else:
cur_image = y.to(torch.float32) + cur_image
# Cast to `torch.float16` if needed.
if layer_idx != self.num_layers - 2:
res = self.init_res * (2**(layer_idx // 2))
if fp16_res is not None and res * 2 >= fp16_res:
x = x.to(torch.float16)
else:
x = x.to(torch.float32)
# rgb interpolation
if cur_lod - 1 < lod <= cur_lod:
image = cur_image
elif cur_lod < lod < cur_lod + 1:
alpha = np.ceil(lod) - lod
image = F.interpolate(image, scale_factor=2, mode='nearest')
image = cur_image * alpha + image * (1 - alpha)
elif lod >= cur_lod + 1:
image = F.interpolate(image, scale_factor=2, mode='nearest')
if self.final_tanh:
image = torch.tanh(image)
results['image'] = image
return results
|