File size: 12,605 Bytes
2f85de4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# python 3.7
"""Contains the implementation of discriminator described in EG3D."""


import numpy as np
import torch
from third_party.stylegan2_official_ops import upfirdn2d
from models.utils.official_stylegan2_model_helper import DiscriminatorBlock
from models.utils.official_stylegan2_model_helper import MappingNetwork
from models.utils.official_stylegan2_model_helper import DiscriminatorEpilogue


class SingleDiscriminator(torch.nn.Module):
    def __init__(self,
        c_dim,                          # Conditioning label (C) dimensionality.
        img_resolution,                 # Input resolution.
        img_channels,                   # Number of input color channels.
        architecture        = 'resnet', # Architecture: 'orig', 'skip', 'resnet'.
        channel_base        = 32768,    # Overall multiplier for the number of channels.
        channel_max         = 512,      # Maximum number of channels in any layer.
        num_fp16_res        = 4,        # Use FP16 for the N highest resolutions.
        conv_clamp          = 256,      # Clamp the output of convolution layers to +-X, None = disable clamping.
        cmap_dim            = None,     # Dimensionality of mapped conditioning label, None = default.
        sr_upsample_factor  = 1,        # Ignored for SingleDiscriminator
        block_kwargs        = {},       # Arguments for DiscriminatorBlock.
        mapping_kwargs      = {},       # Arguments for MappingNetwork.
        epilogue_kwargs     = {},       # Arguments for DiscriminatorEpilogue.
    ):
        super().__init__()
        self.c_dim = c_dim
        self.img_resolution = img_resolution
        self.img_resolution_log2 = int(np.log2(img_resolution))
        self.img_channels = img_channels
        self.block_resolutions = [2 ** i for i in range(self.img_resolution_log2, 2, -1)]
        channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions + [4]}
        fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)

        if cmap_dim is None:
            cmap_dim = channels_dict[4]
        if c_dim == 0:
            cmap_dim = 0

        common_kwargs = dict(img_channels=img_channels, architecture=architecture, conv_clamp=conv_clamp)
        cur_layer_idx = 0
        for res in self.block_resolutions:
            in_channels = channels_dict[res] if res < img_resolution else 0
            tmp_channels = channels_dict[res]
            out_channels = channels_dict[res // 2]
            use_fp16 = (res >= fp16_resolution)
            block = DiscriminatorBlock(in_channels, tmp_channels, out_channels, resolution=res,
                first_layer_idx=cur_layer_idx, use_fp16=use_fp16, **block_kwargs, **common_kwargs)
            setattr(self, f'b{res}', block)
            cur_layer_idx += block.num_layers
        if c_dim > 0:
            self.mapping = MappingNetwork(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None, **mapping_kwargs)
        self.b4 = DiscriminatorEpilogue(channels_dict[4], cmap_dim=cmap_dim, resolution=4, **epilogue_kwargs, **common_kwargs)

    def forward(self, img, c, update_emas=False, **block_kwargs):
        img = img['image']

        _ = update_emas # unused
        x = None
        for res in self.block_resolutions:
            block = getattr(self, f'b{res}')
            x, img = block(x, img, **block_kwargs)

        cmap = None
        if self.c_dim > 0:
            cmap = self.mapping(None, c)
        x = self.b4(x, img, cmap)
        return x

    def extra_repr(self):
        return f'c_dim={self.c_dim:d}, img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d}'

#----------------------------------------------------------------------------

def filtered_resizing(image_orig_tensor, size, f, filter_mode='antialiased'):
    if filter_mode == 'antialiased':
        ada_filtered_64 = torch.nn.functional.interpolate(image_orig_tensor, size=(size, size), mode='bilinear', align_corners=False)
    elif filter_mode == 'classic':
        ada_filtered_64 = upfirdn2d.upsample2d(image_orig_tensor, f, up=2)
        ada_filtered_64 = torch.nn.functional.interpolate(ada_filtered_64, size=(size * 2 + 2, size * 2 + 2), mode='bilinear', align_corners=False)
        ada_filtered_64 = upfirdn2d.downsample2d(ada_filtered_64, f, down=2, flip_filter=True, padding=-1)
    elif filter_mode == 'none':
        ada_filtered_64 = torch.nn.functional.interpolate(image_orig_tensor, size=(size, size), mode='bilinear', align_corners=False)
    elif type(filter_mode) == float:
        assert 0 < filter_mode < 1

        filtered = torch.nn.functional.interpolate(image_orig_tensor, size=(size, size), mode='bilinear', align_corners=False)
        aliased  = torch.nn.functional.interpolate(image_orig_tensor, size=(size, size), mode='bilinear', align_corners=False)
        ada_filtered_64 = (1 - filter_mode) * aliased + (filter_mode) * filtered

    return ada_filtered_64

#----------------------------------------------------------------------------

class DualDiscriminator(torch.nn.Module):
    def __init__(self,
        c_dim,                          # Conditioning label (C) dimensionality.
        img_resolution,                 # Input resolution.
        img_channels,                   # Number of input color channels.
        bev_channels        = 0,
        architecture        = 'resnet', # Architecture: 'orig', 'skip', 'resnet'.
        channel_base        = 32768,    # Overall multiplier for the number of channels.
        channel_max         = 512,      # Maximum number of channels in any layer.
        num_fp16_res        = 4,        # Use FP16 for the N highest resolutions.
        conv_clamp          = 256,      # Clamp the output of convolution layers to +-X, None = disable clamping.
        cmap_dim            = None,     # Dimensionality of mapped conditioning label, None = default.
        disc_c_noise        = 0,        # Corrupt camera parameters with X std dev of noise before disc. pose conditioning.
        block_kwargs        = {},       # Arguments for DiscriminatorBlock.
        mapping_kwargs      = {},       # Arguments for MappingNetwork.
        epilogue_kwargs     = {},       # Arguments for DiscriminatorEpilogue.
    ):
        super().__init__()
        img_channels *= 2

        self.c_dim = c_dim
        self.img_resolution = img_resolution
        self.img_resolution_log2 = int(np.log2(img_resolution))
        self.img_channels = img_channels + bev_channels
        self.block_resolutions = [2 ** i for i in range(self.img_resolution_log2, 2, -1)]
        channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions + [4]}
        fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)

        if cmap_dim is None:
            cmap_dim = channels_dict[4]
        if c_dim == 0:
            cmap_dim = 0

        common_kwargs = dict(img_channels=self.img_channels, architecture=architecture, conv_clamp=conv_clamp)
        cur_layer_idx = 0
        for res in self.block_resolutions:
            in_channels = channels_dict[res] if res < img_resolution else 0
            tmp_channels = channels_dict[res]
            out_channels = channels_dict[res // 2]
            use_fp16 = (res >= fp16_resolution)
            block = DiscriminatorBlock(in_channels, tmp_channels, out_channels, resolution=res,
                first_layer_idx=cur_layer_idx, use_fp16=use_fp16, **block_kwargs, **common_kwargs)
            setattr(self, f'b{res}', block)
            cur_layer_idx += block.num_layers
        if c_dim > 0:
            self.mapping = MappingNetwork(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None, **mapping_kwargs)
        self.b4 = DiscriminatorEpilogue(channels_dict[4], cmap_dim=cmap_dim, resolution=4, **epilogue_kwargs, **common_kwargs)
        self.register_buffer('resample_filter', upfirdn2d.setup_filter([1,3,3,1]))
        self.disc_c_noise = disc_c_noise

    def forward(self, img, c, bev=None, update_emas=False, **block_kwargs):
        image_raw = filtered_resizing(img['image_raw'], size=img['image'].shape[-1], f=self.resample_filter)
        img = torch.cat([img['image'], image_raw], 1)
        if bev is not None:
            img = torch.cat([img, bev], 1)

        _ = update_emas # unused
        x = None
        for res in self.block_resolutions:
            block = getattr(self, f'b{res}')
            x, img = block(x, img, **block_kwargs)

        cmap = None
        if self.c_dim > 0:
            if self.disc_c_noise > 0: c += torch.randn_like(c) * c.std(0) * self.disc_c_noise
            cmap = self.mapping(None, c)
        x = self.b4(x, img, cmap)
        return x

    def extra_repr(self):
        return f'c_dim={self.c_dim:d}, img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d}'

#----------------------------------------------------------------------------

class DummyDualDiscriminator(torch.nn.Module):
    def __init__(self,
        c_dim,                          # Conditioning label (C) dimensionality.
        img_resolution,                 # Input resolution.
        img_channels,                   # Number of input color channels.
        architecture        = 'resnet', # Architecture: 'orig', 'skip', 'resnet'.
        channel_base        = 32768,    # Overall multiplier for the number of channels.
        channel_max         = 512,      # Maximum number of channels in any layer.
        num_fp16_res        = 4,        # Use FP16 for the N highest resolutions.
        conv_clamp          = 256,      # Clamp the output of convolution layers to +-X, None = disable clamping.
        cmap_dim            = None,     # Dimensionality of mapped conditioning label, None = default.
        block_kwargs        = {},       # Arguments for DiscriminatorBlock.
        mapping_kwargs      = {},       # Arguments for MappingNetwork.
        epilogue_kwargs     = {},       # Arguments for DiscriminatorEpilogue.
    ):
        super().__init__()
        img_channels *= 2

        self.c_dim = c_dim
        self.img_resolution = img_resolution
        self.img_resolution_log2 = int(np.log2(img_resolution))
        self.img_channels = img_channels
        self.block_resolutions = [2 ** i for i in range(self.img_resolution_log2, 2, -1)]
        channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions + [4]}
        fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)

        if cmap_dim is None:
            cmap_dim = channels_dict[4]
        if c_dim == 0:
            cmap_dim = 0

        common_kwargs = dict(img_channels=img_channels, architecture=architecture, conv_clamp=conv_clamp)
        cur_layer_idx = 0
        for res in self.block_resolutions:
            in_channels = channels_dict[res] if res < img_resolution else 0
            tmp_channels = channels_dict[res]
            out_channels = channels_dict[res // 2]
            use_fp16 = (res >= fp16_resolution)
            block = DiscriminatorBlock(in_channels, tmp_channels, out_channels, resolution=res,
                first_layer_idx=cur_layer_idx, use_fp16=use_fp16, **block_kwargs, **common_kwargs)
            setattr(self, f'b{res}', block)
            cur_layer_idx += block.num_layers
        if c_dim > 0:
            self.mapping = MappingNetwork(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None, **mapping_kwargs)
        self.b4 = DiscriminatorEpilogue(channels_dict[4], cmap_dim=cmap_dim, resolution=4, **epilogue_kwargs, **common_kwargs)
        self.register_buffer('resample_filter', upfirdn2d.setup_filter([1,3,3,1]))

        self.raw_fade = 1

    def forward(self, img, c, update_emas=False, **block_kwargs):
        self.raw_fade = max(0, self.raw_fade - 1/(500000/32))

        image_raw = filtered_resizing(img['image_raw'], size=img['image'].shape[-1], f=self.resample_filter) * self.raw_fade
        img = torch.cat([img['image'], image_raw], 1)

        _ = update_emas # unused
        x = None
        for res in self.block_resolutions:
            block = getattr(self, f'b{res}')
            x, img = block(x, img, **block_kwargs)

        cmap = None
        if self.c_dim > 0:
            cmap = self.mapping(None, c)
        x = self.b4(x, img, cmap)
        return x

    def extra_repr(self):
        return f'c_dim={self.c_dim:d}, img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d}'

#----------------------------------------------------------------------------