File size: 7,211 Bytes
637c218 419df27 637c218 419df27 637c218 77cac22 637c218 25fe69f 637c218 25fe69f 637c218 77cac22 637c218 77cac22 99d8dae 78b9ab2 99d8dae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import torch
import os
import json
import random
import numpy as np
from torch import nn
import argparse
import logging
from transformers import GPT2TokenizerFast, GPT2LMHeadModel, GPT2Config
from transformers import BertTokenizerFast
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoConfig, get_linear_schedule_with_warmup, AdamW, BertModel
PAD = '[PAD]'
pad_id = 0
def set_args():
"""
Sets up the arguments.
"""
parser = argparse.ArgumentParser()
parser.add_argument('--device', default='0', type=str, required=False, help='生成设备')
# parser.add_argument('--model_config', default='config/model_config_dialogue_small.json', type=str, required=False,
# help='模型参数')
parser.add_argument('--log_path', default='interact.log', type=str, required=False, help='interact日志存放位置')
parser.add_argument('--model_path', default='./pathology_extra/result/12/model.pth', type=str, required=False, help='对话模型路径')
parser.add_argument('--vocab_path', default='/app/bert-base-zh/vocab.txt', type=str, required=False,
help='对话模型路径')
parser.add_argument('--repetition_penalty', default=1.0, type=float, required=False,
help="重复惩罚参数,若生成的对话重复性较高,可适当提高该参数")
# parser.add_argument('--seed', type=int, default=None, help='设置种子用于生成随机数,以使得训练的结果是确定的')
parser.add_argument('--max_len', type=int, default=25, help='每个utterance的最大长度,超过指定长度则进行截断')
parser.add_argument('--max_history_len', type=int, default=3, help="dialogue history的最大长度")
parser.add_argument('--no_cuda', action='store_true', help='不使用GPU进行预测')
return parser.parse_args()
def create_logger(args):
"""
将日志输出到日志文件和控制台
"""
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
formatter = logging.Formatter(
'%(asctime)s - %(levelname)s - %(message)s')
# 创建一个handler,用于写入日志文件
file_handler = logging.FileHandler(
filename=args.log_path)
file_handler.setFormatter(formatter)
file_handler.setLevel(logging.INFO)
logger.addHandler(file_handler)
# 创建一个handler,用于将日志输出到控制台
console = logging.StreamHandler()
console.setLevel(logging.DEBUG)
console.setFormatter(formatter)
logger.addHandler(console)
return logger
class Word_BERT(nn.Module):
def __init__(self, seq_label=1,cancer_label=8,transfer_label=2,ly_transfer=2):
super(Word_BERT, self).__init__()
self.bert = BertModel.from_pretrained('/app/bert-base-zh')
# self.bert_config = self.bert.config
self.out = nn.Sequential(
# nn.Linear(768,256),
# nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(768, seq_label)
)
self.cancer = nn.Sequential(
nn.Dropout(0.1),
nn.Linear(768, cancer_label)
)
self.transfer = nn.Sequential(
nn.Dropout(0.1),
nn.Linear(768, transfer_label)
)
self.ly_transfer = nn.Sequential(
nn.Dropout(0.1),
nn.Linear(768, ly_transfer)
)
def forward(self, word_input, masks):
# print(word_input.size())
output = self.bert(word_input, attention_mask=masks)
sequence_output = output.last_hidden_state
pool = output.pooler_output
# print(sequence_output.size())
# print(pool.size())
out = self.out(sequence_output)
cancer = self.cancer(pool)
transfer = self.transfer(pool)
ly_transfer = self.ly_transfer(pool)
return out,cancer,transfer,ly_transfer
def getChat(text):
# while True:
# if True:
# text = input("user:")
# text = "你好"
# if args.save_samples_path:
# samples_file.write("user:{}\n".format(text))
text = ['[CLS]']+[i for i in text]+['[SEP]']
# print(text)
text_ids = tokenizer.convert_tokens_to_ids(text)
# print(text_ids)
input_ids = torch.tensor(text_ids).long().to(device)
input_ids = input_ids.unsqueeze(0)
mask_input = torch.ones_like(input_ids).long().to(device)
# print(input_ids.size())
response = [] # 根据context,生成的response
# 最多生成max_len个token
with torch.no_grad():
out, cancer, transfer, ly_transfer = model(input_ids, mask_input)
out = F.sigmoid(out).squeeze(2).cpu()
out = out.numpy().tolist()
cancer = cancer.argmax(dim=-1).cpu().numpy().tolist()
transfer = transfer.argmax(dim=-1).cpu().numpy().tolist()
ly_transfer = ly_transfer.argmax(dim=-1).cpu().numpy().tolist()
# print(out)
# print(cancer,transfer,ly_transfer)
pred_thresold = [[1 if jj > 0.4 else 0 for jj in ii] for ii in out]
size_list = []
start,end = 0,0
for i,j in enumerate(pred_thresold[0]):
if j==1 and start==end:
start = i
elif j!=1 and start!=end:
end = i
size_list.append((start,end))
start = end
print(size_list)
cancer_dict = {'腺癌': 0, '肺良性疾病': 1, '鳞癌': 2, '无法判断组织分型': 3, '复合型': 4, '转移癌': 5, '小细胞癌': 6, '大细胞癌': 7}
id_cancer = {j:i for i,j in cancer_dict.items()}
transfer_id = {'无': 0, '转移': 1}
id_transfer = {j:i for i,j in transfer_id.items()}
lymph_transfer_id = {'无': 0, '淋巴转移': 1}
id_lymph_transfer = {j: i for i, j in lymph_transfer_id.items()}
# print(cancer)
cancer = id_cancer[cancer[0]]
transfer = id_transfer[transfer[0]]
ly_transfer = id_lymph_transfer[ly_transfer[0]]
print(cancer,transfer,ly_transfer)
return size_list,cancer,transfer,ly_transfer
import requests
import uvicorn
from pydantic import BaseModel
from fastapi import FastAPI
app = FastAPI()
# import intel_extension_for_pytorch as ipex
args = set_args()
logger = create_logger(args)
# 当用户使用GPU,并且GPU可用时
args.cuda = torch.cuda.is_available() and not args.no_cuda
device = 'cuda' if args.cuda else 'cpu'
logger.info('using device:{}'.format(device))
os.environ["CUDA_VISIBLE_DEVICES"] = args.device
tokenizer = BertTokenizerFast(vocab_file=args.vocab_path, sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]")
# tokenizer = BertTokenizer(vocab_file=args.voca_path)
model = Word_BERT()
# model = model.load_state_dict(torch.load(args.model_path))
model = model.to(device)
model.eval()
# history = []
Allhistory = {}
print('初始化完成')
import time
lastReplyTime = 0
@app.post("/")
async def get_Chat(context):
global lastReplyTime
tempReplyTime = int(time.time() * 1000)
# if tempReplyTime % 10 == 0 or item1.must == True or tempReplyTime - lastReplyTime < 30000:
# if item1.must == True:
# lastReplyTime = tempReplyTime
result = getChat(context)
return {"res": result}
@app.get("/hello")
def read_root():
return {"Hello": "World!"}
|