File size: 8,641 Bytes
99bc354
 
 
47d6c70
 
 
 
 
 
 
 
 
 
 
 
99bc354
47d6c70
 
 
99bc354
 
297e563
47d6c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3e5320
47d6c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b50eeab
47d6c70
 
 
 
 
 
 
 
 
 
 
183839c
47d6c70
183839c
47d6c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7648d5b
661a5fb
 
 
 
 
 
76cc215
fae408a
661a5fb
 
 
967f52d
661a5fb
 
 
0b86953
 
 
661a5fb
 
 
 
 
 
 
 
 
a0f58af
 
 
 
47d6c70
 
 
 
 
 
 
 
 
 
 
9d5038d
5058875
47d6c70
661a5fb
47d6c70
99bc354
 
fe257c0
297e563
 
 
96db9aa
f3e5320
ffe4161
297e563
a2c963f
ffe4161
297e563
b50eeab
297e563
ffe4161
b50eeab
fe257c0
99bc354
 
661a5fb
7648d5b
5058875
49d65dd
99bc354
 
 
 
 
 
b6e8c06
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
import torch
import os
import json
import random
import numpy as np
from torch import nn
import argparse
import logging
from transformers import GPT2TokenizerFast, GPT2LMHeadModel, GPT2Config
from transformers import BertTokenizerFast
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoConfig, get_linear_schedule_with_warmup, AdamW, BertModel

import requests
import uvicorn
from pydantic import BaseModel
from transformers import pipeline

extra_args = {}
def set_args():
    """
    Sets up the arguments.
    """
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', default='0', type=str, required=False, help='生成设备')
    # parser.add_argument('--model_config', default='config/model_config_dialogue_small.json', type=str, required=False,
    #                     help='模型参数')
    parser.add_argument('--log_path', default='interact.log', type=str, required=False, help='interact日志存放位置')
    parser.add_argument('--model_path', default='./pathology_extra/result/12/model.pth', type=str, required=False, help='对话模型路径')
    parser.add_argument('--vocab_path', default='/app/bert-base-zh/vocab.txt', type=str, required=False,
                        help='对话模型路径')
    parser.add_argument('--repetition_penalty', default=1.0, type=float, required=False,
                        help="重复惩罚参数,若生成的对话重复性较高,可适当提高该参数")
    # parser.add_argument('--seed', type=int, default=None, help='设置种子用于生成随机数,以使得训练的结果是确定的')
    parser.add_argument('--max_len', type=int, default=25, help='每个utterance的最大长度,超过指定长度则进行截断')
    parser.add_argument('--max_history_len', type=int, default=3, help="dialogue history的最大长度")
    parser.add_argument('--no_cuda', action='store_true', help='不使用GPU进行预测')
    return parser.parse_args()


def create_logger(args):
    """
    将日志输出到日志文件和控制台
    """
    logger = logging.getLogger(__name__)
    logger.setLevel(logging.INFO)

    formatter = logging.Formatter(
        '%(asctime)s - %(levelname)s - %(message)s')

    # 创建一个handler,用于写入日志文件
    file_handler = logging.FileHandler(
        filename=args.log_path)
    file_handler.setFormatter(formatter)
    file_handler.setLevel(logging.INFO)
    logger.addHandler(file_handler)

    # 创建一个handler,用于将日志输出到控制台
    console = logging.StreamHandler()
    console.setLevel(logging.DEBUG)
    console.setFormatter(formatter)
    logger.addHandler(console)

    return logger

class Word_BERT(nn.Module):
    def __init__(self, seq_label=1,cancer_label=8,transfer_label=2,ly_transfer=2):
        super(Word_BERT, self).__init__()
        self.bert = BertModel.from_pretrained('/home/user/app/./bert-base-zh')
        # self.bert_config = self.bert.config
        self.out = nn.Sequential(
            # nn.Linear(768,256),
            # nn.ReLU(),
            nn.Dropout(0.1),
            nn.Linear(768, seq_label)
        )
        self.cancer = nn.Sequential(
            nn.Dropout(0.1),
            nn.Linear(768, cancer_label)
        )
        self.transfer = nn.Sequential(
            nn.Dropout(0.1),
            nn.Linear(768, transfer_label)
        )
        self.ly_transfer = nn.Sequential(
            nn.Dropout(0.1),
            nn.Linear(768, ly_transfer)
        )

    def forward(self, word_input, masks):
        # print(word_input.size())
        output = self.bert(word_input, attention_mask=masks)
        sequence_output = output.last_hidden_state
        pool = output.pooler_output
        # print(sequence_output.size())
        # print(pool.size())
        out = self.out(sequence_output)
        cancer = self.cancer(pool)
        transfer = self.transfer(pool)
        ly_transfer = self.ly_transfer(pool)
        return out,cancer,transfer,ly_transfer

def getChat(text,model,tokenizer):
    # while True:
    #     if True:
    # text = input("user:")
    # text = "你好"
    # if args.save_samples_path:
    #     samples_file.write("user:{}\n".format(text))
    text = ['[CLS]']+[i for i in text]+['[SEP]']
    # print(text)
    text_ids = tokenizer.convert_tokens_to_ids(text)
    # print(text_ids)

    input_ids = torch.tensor(text_ids).long()
    input_ids = input_ids.unsqueeze(0)
    mask_input = torch.ones_like(input_ids).long()
    # print(input_ids.size())
    response = []  # 根据context,生成的response
    # 最多生成max_len个token
    with torch.no_grad():
        out, cancer, transfer, ly_transfer = model(input_ids, mask_input)
        out = F.sigmoid(out).squeeze(2).cpu()
        out = out.numpy().tolist()
        cancer = cancer.argmax(dim=-1).cpu().numpy().tolist()
        transfer = transfer.argmax(dim=-1).cpu().numpy().tolist()
        ly_transfer = ly_transfer.argmax(dim=-1).cpu().numpy().tolist()
        # print(out)
        # print(cancer,transfer,ly_transfer)

    pred_thresold = [[1 if jj > 0.4 else 0 for jj in ii] for ii in out]
    size_list = []
    start,end = 0,0
    for i,j in enumerate(pred_thresold[0]):
        if j==1 and start==end:
            start = i
        elif j!=1 and start!=end:
            end = i
            size_list.append((start,end))
            start = end
    # print(size_list)
    size_text = []
    for k in size_list:
        size_text.append(text[k[0]:k[1]])
    if len(size_text)==0:
        size_str = "无"
    else:
        size_str = ''.join(size_text[0])
    if '×' in size_str:
        split_w = '×'
    else:
        split_w = '*'
    tt = size_str.split(split_w)
    f = 0
    if tt[0][0].isdigit():
        size_float = [float(i) for i in tt]
        for  kk in size_float:
            if kk>=4:
                f = 1
    else:
        size_str = "无"
        
    if size_str == "无":
        size_4 = "无"
    elif f==0:
        size_4 = "<4cm"
    else:
        size_4 = ">=4cm"
    # if len(size_list)==0:
    #     size_str = "无"
    # else:
    #     size_str = ''.join(size_list)

    cancer_dict = {'腺癌': 0, '肺良性疾病': 1, '鳞癌': 2, '无法判断组织分型': 3, '复合型': 4, '转移癌': 5, '小细胞癌': 6, '大细胞癌': 7}
    id_cancer = {j:i for i,j in cancer_dict.items()}
    transfer_id = {'无': 0, '转移': 1}
    id_transfer = {j:i for i,j in transfer_id.items()}
    lymph_transfer_id = {'无': 0, '淋巴转移': 1}
    id_lymph_transfer = {j: i for i, j in lymph_transfer_id.items()}
    # print(cancer)
    cancer = id_cancer[cancer[0]]
    transfer = id_transfer[transfer[0]]
    ly_transfer = id_lymph_transfer[ly_transfer[0]]
    # print(cancer,transfer,ly_transfer)
    output = "肿瘤大小:"+size_str+"\n肿瘤大小<>=4cm:"+size_4+"\n"+"病理组织分型:"+cancer+"\n"+"转移:"+transfer+"\n"+"淋巴转移:"+ly_transfer+"\n"

    return output,size_str,size_4,cancer,transfer,ly_transfer

app = FastAPI()

def model_init():
    # args = set_args()
    acuda = torch.cuda.is_available() and not args.no_cuda
    device = 'cuda' if acuda else 'cpu'
    os.environ["CUDA_VISIBLE_DEVICES"] = device
    tokenizer = BertTokenizerFast(vocab_file='/home/user/app/./bert-base-zh/vocab.txt', sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]")
    # # tokenizer = BertTokenizer(vocab_file=args.voca_path)
    model = Word_BERT()
    model.load_state_dict(torch.load('/home/user/app/./model.pth',map_location=torch.device('cpu')))
    # model = model.to(device)
    model.eval()
    return tokenizer,model
    # return None

tokenizer,model_extra = model_init()

@app.get("/infer_t5")
def t5(input):
    output,size_str,size_4,cancer,transfer,ly_transfer = getChat(input,model_extra,tokenizer)
    # output = pipe_flan(input)
    # ,"size_str":size_str,"size_4":size_4,"cancer":cancer,"transfer":transfer,"ly_transfer":ly_transfer
    return {"output": output,"size_str":size_str,"size_4":size_4,"cancer":cancer,"transfer":transfer,"ly_transfer":ly_transfer}

app.mount("/", StaticFiles(directory="static", html=True), name="static")

@app.get("/")
def index() -> FileResponse:
    return FileResponse(path="/app/static/index.html", media_type="text/html")

@app.get("/postText")
def postText(input):
    output,size_str,size_4,cancer,transfer,ly_transfer = getChat(input,model_extra,tokenizer)

    return {"output": output,"size_str":size_str,"size_4":size_4,"cancer":cancer,"transfer":transfer,"ly_transfer":ly_transfer}