File size: 8,641 Bytes
99bc354 47d6c70 99bc354 47d6c70 99bc354 297e563 47d6c70 f3e5320 47d6c70 b50eeab 47d6c70 183839c 47d6c70 183839c 47d6c70 7648d5b 661a5fb 76cc215 fae408a 661a5fb 967f52d 661a5fb 0b86953 661a5fb a0f58af 47d6c70 9d5038d 5058875 47d6c70 661a5fb 47d6c70 99bc354 fe257c0 297e563 96db9aa f3e5320 ffe4161 297e563 a2c963f ffe4161 297e563 b50eeab 297e563 ffe4161 b50eeab fe257c0 99bc354 661a5fb 7648d5b 5058875 49d65dd 99bc354 b6e8c06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
import torch
import os
import json
import random
import numpy as np
from torch import nn
import argparse
import logging
from transformers import GPT2TokenizerFast, GPT2LMHeadModel, GPT2Config
from transformers import BertTokenizerFast
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoConfig, get_linear_schedule_with_warmup, AdamW, BertModel
import requests
import uvicorn
from pydantic import BaseModel
from transformers import pipeline
extra_args = {}
def set_args():
"""
Sets up the arguments.
"""
parser = argparse.ArgumentParser()
parser.add_argument('--device', default='0', type=str, required=False, help='生成设备')
# parser.add_argument('--model_config', default='config/model_config_dialogue_small.json', type=str, required=False,
# help='模型参数')
parser.add_argument('--log_path', default='interact.log', type=str, required=False, help='interact日志存放位置')
parser.add_argument('--model_path', default='./pathology_extra/result/12/model.pth', type=str, required=False, help='对话模型路径')
parser.add_argument('--vocab_path', default='/app/bert-base-zh/vocab.txt', type=str, required=False,
help='对话模型路径')
parser.add_argument('--repetition_penalty', default=1.0, type=float, required=False,
help="重复惩罚参数,若生成的对话重复性较高,可适当提高该参数")
# parser.add_argument('--seed', type=int, default=None, help='设置种子用于生成随机数,以使得训练的结果是确定的')
parser.add_argument('--max_len', type=int, default=25, help='每个utterance的最大长度,超过指定长度则进行截断')
parser.add_argument('--max_history_len', type=int, default=3, help="dialogue history的最大长度")
parser.add_argument('--no_cuda', action='store_true', help='不使用GPU进行预测')
return parser.parse_args()
def create_logger(args):
"""
将日志输出到日志文件和控制台
"""
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
formatter = logging.Formatter(
'%(asctime)s - %(levelname)s - %(message)s')
# 创建一个handler,用于写入日志文件
file_handler = logging.FileHandler(
filename=args.log_path)
file_handler.setFormatter(formatter)
file_handler.setLevel(logging.INFO)
logger.addHandler(file_handler)
# 创建一个handler,用于将日志输出到控制台
console = logging.StreamHandler()
console.setLevel(logging.DEBUG)
console.setFormatter(formatter)
logger.addHandler(console)
return logger
class Word_BERT(nn.Module):
def __init__(self, seq_label=1,cancer_label=8,transfer_label=2,ly_transfer=2):
super(Word_BERT, self).__init__()
self.bert = BertModel.from_pretrained('/home/user/app/./bert-base-zh')
# self.bert_config = self.bert.config
self.out = nn.Sequential(
# nn.Linear(768,256),
# nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(768, seq_label)
)
self.cancer = nn.Sequential(
nn.Dropout(0.1),
nn.Linear(768, cancer_label)
)
self.transfer = nn.Sequential(
nn.Dropout(0.1),
nn.Linear(768, transfer_label)
)
self.ly_transfer = nn.Sequential(
nn.Dropout(0.1),
nn.Linear(768, ly_transfer)
)
def forward(self, word_input, masks):
# print(word_input.size())
output = self.bert(word_input, attention_mask=masks)
sequence_output = output.last_hidden_state
pool = output.pooler_output
# print(sequence_output.size())
# print(pool.size())
out = self.out(sequence_output)
cancer = self.cancer(pool)
transfer = self.transfer(pool)
ly_transfer = self.ly_transfer(pool)
return out,cancer,transfer,ly_transfer
def getChat(text,model,tokenizer):
# while True:
# if True:
# text = input("user:")
# text = "你好"
# if args.save_samples_path:
# samples_file.write("user:{}\n".format(text))
text = ['[CLS]']+[i for i in text]+['[SEP]']
# print(text)
text_ids = tokenizer.convert_tokens_to_ids(text)
# print(text_ids)
input_ids = torch.tensor(text_ids).long()
input_ids = input_ids.unsqueeze(0)
mask_input = torch.ones_like(input_ids).long()
# print(input_ids.size())
response = [] # 根据context,生成的response
# 最多生成max_len个token
with torch.no_grad():
out, cancer, transfer, ly_transfer = model(input_ids, mask_input)
out = F.sigmoid(out).squeeze(2).cpu()
out = out.numpy().tolist()
cancer = cancer.argmax(dim=-1).cpu().numpy().tolist()
transfer = transfer.argmax(dim=-1).cpu().numpy().tolist()
ly_transfer = ly_transfer.argmax(dim=-1).cpu().numpy().tolist()
# print(out)
# print(cancer,transfer,ly_transfer)
pred_thresold = [[1 if jj > 0.4 else 0 for jj in ii] for ii in out]
size_list = []
start,end = 0,0
for i,j in enumerate(pred_thresold[0]):
if j==1 and start==end:
start = i
elif j!=1 and start!=end:
end = i
size_list.append((start,end))
start = end
# print(size_list)
size_text = []
for k in size_list:
size_text.append(text[k[0]:k[1]])
if len(size_text)==0:
size_str = "无"
else:
size_str = ''.join(size_text[0])
if '×' in size_str:
split_w = '×'
else:
split_w = '*'
tt = size_str.split(split_w)
f = 0
if tt[0][0].isdigit():
size_float = [float(i) for i in tt]
for kk in size_float:
if kk>=4:
f = 1
else:
size_str = "无"
if size_str == "无":
size_4 = "无"
elif f==0:
size_4 = "<4cm"
else:
size_4 = ">=4cm"
# if len(size_list)==0:
# size_str = "无"
# else:
# size_str = ''.join(size_list)
cancer_dict = {'腺癌': 0, '肺良性疾病': 1, '鳞癌': 2, '无法判断组织分型': 3, '复合型': 4, '转移癌': 5, '小细胞癌': 6, '大细胞癌': 7}
id_cancer = {j:i for i,j in cancer_dict.items()}
transfer_id = {'无': 0, '转移': 1}
id_transfer = {j:i for i,j in transfer_id.items()}
lymph_transfer_id = {'无': 0, '淋巴转移': 1}
id_lymph_transfer = {j: i for i, j in lymph_transfer_id.items()}
# print(cancer)
cancer = id_cancer[cancer[0]]
transfer = id_transfer[transfer[0]]
ly_transfer = id_lymph_transfer[ly_transfer[0]]
# print(cancer,transfer,ly_transfer)
output = "肿瘤大小:"+size_str+"\n肿瘤大小<>=4cm:"+size_4+"\n"+"病理组织分型:"+cancer+"\n"+"转移:"+transfer+"\n"+"淋巴转移:"+ly_transfer+"\n"
return output,size_str,size_4,cancer,transfer,ly_transfer
app = FastAPI()
def model_init():
# args = set_args()
acuda = torch.cuda.is_available() and not args.no_cuda
device = 'cuda' if acuda else 'cpu'
os.environ["CUDA_VISIBLE_DEVICES"] = device
tokenizer = BertTokenizerFast(vocab_file='/home/user/app/./bert-base-zh/vocab.txt', sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]")
# # tokenizer = BertTokenizer(vocab_file=args.voca_path)
model = Word_BERT()
model.load_state_dict(torch.load('/home/user/app/./model.pth',map_location=torch.device('cpu')))
# model = model.to(device)
model.eval()
return tokenizer,model
# return None
tokenizer,model_extra = model_init()
@app.get("/infer_t5")
def t5(input):
output,size_str,size_4,cancer,transfer,ly_transfer = getChat(input,model_extra,tokenizer)
# output = pipe_flan(input)
# ,"size_str":size_str,"size_4":size_4,"cancer":cancer,"transfer":transfer,"ly_transfer":ly_transfer
return {"output": output,"size_str":size_str,"size_4":size_4,"cancer":cancer,"transfer":transfer,"ly_transfer":ly_transfer}
app.mount("/", StaticFiles(directory="static", html=True), name="static")
@app.get("/")
def index() -> FileResponse:
return FileResponse(path="/app/static/index.html", media_type="text/html")
@app.get("/postText")
def postText(input):
output,size_str,size_4,cancer,transfer,ly_transfer = getChat(input,model_extra,tokenizer)
return {"output": output,"size_str":size_str,"size_4":size_4,"cancer":cancer,"transfer":transfer,"ly_transfer":ly_transfer}
|