File size: 4,551 Bytes
69ad385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1204717
 
 
 
 
 
69ad385
 
 
 
 
 
 
1204717
69ad385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1204717
69ad385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
from functools import lru_cache
import json
from pathlib import Path
import platform
import shutil
import tempfile
import zipfile

import gradio as gr
import numpy as np
import torch

from project_settings import environment, project_path
from toolbox.torch.utils.data.vocabulary import Vocabulary


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--examples_dir",
        default=(project_path / "data/examples").as_posix(),
        type=str
    )
    parser.add_argument(
        "--trained_model_dir",
        default=(project_path / "trained_models").as_posix(),
        type=str
    )
    parser.add_argument(
        "--server_port",
        default=environment.get("server_port", 7860),
        type=int
    )
    args = parser.parse_args()
    return args


@lru_cache(maxsize=100)
def load_model(model_file: Path):
    with zipfile.ZipFile(model_file, "r") as f_zip:
        out_root = Path(tempfile.gettempdir()) / "vm_sound_classification"
        if out_root.exists():
            shutil.rmtree(out_root.as_posix())
        out_root.mkdir(parents=True, exist_ok=True)
        f_zip.extractall(path=out_root)

    tgt_path = out_root / model_file.stem
    jit_model_file = tgt_path / "trace_model.zip"
    vocab_path = tgt_path / "vocabulary"

    vocabulary = Vocabulary.from_files(vocab_path.as_posix())

    with open(jit_model_file.as_posix(), "rb") as f:
        model = torch.jit.load(f)
    model.eval()

    shutil.rmtree(tgt_path)

    d = {
        "model": model,
        "vocabulary": vocabulary
    }
    return d


def click_button(audio: np.ndarray,
                 model_name: str,
                 ground_true: str) -> str:

    sample_rate, signal = audio

    model_file = "trained_models/{}.zip".format(model_name)
    model_file = Path(model_file)
    d = load_model(model_file)

    model = d["model"]
    vocabulary = d["vocabulary"]

    inputs = signal / (1 << 15)
    inputs = torch.tensor(inputs, dtype=torch.float32)
    inputs = torch.unsqueeze(inputs, dim=0)

    with torch.no_grad():
        logits = model.forward(inputs)
        probs = torch.nn.functional.softmax(logits, dim=-1)
        label_idx = torch.argmax(probs, dim=-1)

    label_idx = label_idx.cpu()
    probs = probs.cpu()

    label_idx = label_idx.numpy()[0]
    prob = probs.numpy()[0][label_idx]

    label_str = vocabulary.get_token_from_index(label_idx, namespace="labels")

    return label_str, round(prob, 4)


def main():
    args = get_args()

    examples_dir = Path(args.examples_dir)
    trained_model_dir = Path(args.trained_model_dir)

    # models
    model_choices = list()
    for filename in trained_model_dir.glob("*.zip"):
        model_name = filename.stem
        model_choices.append(model_name)

    # examples
    examples = list()
    for filename in examples_dir.glob("*/*/*.wav"):
        label = filename.parts[-2]

        examples.append([
            filename.as_posix(),
            model_choices[0],
            label
        ])

    # ui
    brief_description = """
国际语音智能外呼系统, 电话声音分类. 
"""

    # ui
    with gr.Blocks() as blocks:
        gr.Markdown(value=brief_description)

        with gr.Row():
            with gr.Column(scale=3):
                c_audio = gr.Audio(label="audio")
                with gr.Row():
                    with gr.Column(scale=3):
                        c_model_name = gr.Dropdown(choices=model_choices, value=model_choices[0], label="model_name")
                    with gr.Column(scale=3):
                        c_ground_true = gr.Textbox(label="ground_true")

                c_button = gr.Button("run", variant="primary")
            with gr.Column(scale=3):
                c_label = gr.Textbox(label="label")
                c_probability = gr.Number(label="probability")

        gr.Examples(
            examples,
            inputs=[c_audio, c_model_name, c_ground_true],
            outputs=[c_label, c_probability],
            fn=click_button,
            examples_per_page=5,
        )

        c_button.click(
            click_button,
            inputs=[c_audio, c_model_name, c_ground_true],
            outputs=[c_label, c_probability],
        )

    blocks.queue().launch(
        share=False if platform.system() == "Windows" else False,
        server_name="127.0.0.1" if platform.system() == "Windows" else "0.0.0.0",
        server_port=args.server_port
    )
    return


if __name__ == "__main__":
    main()