Spaces:
Running
Running
File size: 4,871 Bytes
ed91efa bd3d872 ed91efa bd3d872 ed91efa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
from typing import Tuple
from toolbox.torchaudio.configuration_utils import PretrainedConfig
class DfNet2Config(PretrainedConfig):
def __init__(self,
sample_rate: int = 8000,
nfft: int = 512,
win_size: int = 200,
hop_size: int = 80,
win_type: str = "hann",
spec_bins: int = 256,
erb_bins: int = 32,
min_freq_bins_for_erb: int = 2,
use_ema_norm: bool = True,
conv_channels: int = 64,
conv_kernel_size_input: Tuple[int, int] = (3, 3),
conv_kernel_size_inner: Tuple[int, int] = (1, 3),
convt_kernel_size_inner: Tuple[int, int] = (1, 3),
embedding_hidden_size: int = 256,
encoder_combine_op: str = "concat",
encoder_emb_skip_op: str = "none",
encoder_emb_linear_groups: int = 16,
encoder_emb_hidden_size: int = 256,
encoder_linear_groups: int = 32,
decoder_emb_num_layers: int = 3,
decoder_emb_skip_op: str = "none",
decoder_emb_linear_groups: int = 16,
decoder_emb_hidden_size: int = 256,
df_decoder_hidden_size: int = 256,
df_num_layers: int = 2,
df_order: int = 5,
df_bins: int = 96,
df_gru_skip: str = "grouped_linear",
df_decoder_linear_groups: int = 16,
df_pathway_kernel_size_t: int = 5,
df_lookahead: int = 2,
n_frame: int = 3,
max_local_snr: int = 30,
min_local_snr: int = -15,
norm_tau: float = 1.,
min_snr_db: float = -10,
max_snr_db: float = 20,
lr: float = 0.001,
lr_scheduler: str = "CosineAnnealingLR",
lr_scheduler_kwargs: dict = None,
max_epochs: int = 100,
clip_grad_norm: float = 10.,
seed: int = 1234,
num_workers: int = 4,
batch_size: int = 4,
eval_steps: int = 25000,
use_post_filter: bool = False,
**kwargs
):
super(DfNet2Config, self).__init__(**kwargs)
# transform
self.sample_rate = sample_rate
self.nfft = nfft
self.win_size = win_size
self.hop_size = hop_size
self.win_type = win_type
# spectrum
self.spec_bins = spec_bins
self.erb_bins = erb_bins
self.min_freq_bins_for_erb = min_freq_bins_for_erb
self.use_ema_norm = use_ema_norm
# conv
self.conv_channels = conv_channels
self.conv_kernel_size_input = conv_kernel_size_input
self.conv_kernel_size_inner = conv_kernel_size_inner
self.convt_kernel_size_inner = convt_kernel_size_inner
self.embedding_hidden_size = embedding_hidden_size
# encoder
self.encoder_emb_skip_op = encoder_emb_skip_op
self.encoder_emb_linear_groups = encoder_emb_linear_groups
self.encoder_emb_hidden_size = encoder_emb_hidden_size
self.encoder_linear_groups = encoder_linear_groups
self.encoder_combine_op = encoder_combine_op
# decoder
self.decoder_emb_num_layers = decoder_emb_num_layers
self.decoder_emb_skip_op = decoder_emb_skip_op
self.decoder_emb_linear_groups = decoder_emb_linear_groups
self.decoder_emb_hidden_size = decoder_emb_hidden_size
# df decoder
self.df_decoder_hidden_size = df_decoder_hidden_size
self.df_num_layers = df_num_layers
self.df_order = df_order
self.df_bins = df_bins
self.df_gru_skip = df_gru_skip
self.df_decoder_linear_groups = df_decoder_linear_groups
self.df_pathway_kernel_size_t = df_pathway_kernel_size_t
self.df_lookahead = df_lookahead
# lsnr
self.n_frame = n_frame
self.max_local_snr = max_local_snr
self.min_local_snr = min_local_snr
self.norm_tau = norm_tau
# data snr
self.min_snr_db = min_snr_db
self.max_snr_db = max_snr_db
# train
self.lr = lr
self.lr_scheduler = lr_scheduler
self.lr_scheduler_kwargs = lr_scheduler_kwargs or dict()
self.max_epochs = max_epochs
self.clip_grad_norm = clip_grad_norm
self.seed = seed
self.num_workers = num_workers
self.batch_size = batch_size
self.eval_steps = eval_steps
# runtime
self.use_post_filter = use_post_filter
if __name__ == "__main__":
pass
|