Spaces:
Running
Running
File size: 34,715 Bytes
1d4c9c3 da78a0e 1d4c9c3 da78a0e 1d4c9c3 da78a0e 1d4c9c3 da78a0e 1d4c9c3 da78a0e 1d4c9c3 da78a0e 1d4c9c3 da78a0e 1d4c9c3 da78a0e 1d4c9c3 da78a0e 1d4c9c3 da78a0e 1d4c9c3 da78a0e 1d4c9c3 da78a0e 1d4c9c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import os
import math
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F
import torchaudio
from toolbox.torchaudio.configuration_utils import CONFIG_FILE
from toolbox.torchaudio.models.dfnet.configuration_dfnet import DfNetConfig
from toolbox.torchaudio.models.dfnet.conv_stft import ConvSTFT, ConviSTFT
MODEL_FILE = "model.pt"
norm_layer_dict = {
"batch_norm_2d": torch.nn.BatchNorm2d
}
activation_layer_dict = {
"relu": torch.nn.ReLU,
"identity": torch.nn.Identity,
"sigmoid": torch.nn.Sigmoid,
}
class CausalConv2d(nn.Sequential):
def __init__(self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Iterable[int]],
fstride: int = 1,
dilation: int = 1,
fpad: bool = True,
bias: bool = True,
separable: bool = False,
norm_layer: str = "batch_norm_2d",
activation_layer: str = "relu",
lookahead: int = 0
):
"""
Causal Conv2d by delaying the signal for any lookahead.
Expected input format: [batch_size, channels, time_steps, spec_dim]
:param in_channels:
:param out_channels:
:param kernel_size:
:param fstride:
:param dilation:
:param fpad:
"""
super(CausalConv2d, self).__init__()
kernel_size = (kernel_size, kernel_size) if isinstance(kernel_size, int) else tuple(kernel_size)
if fpad:
fpad_ = kernel_size[1] // 2 + dilation - 1
else:
fpad_ = 0
# for last 2 dim, pad (left, right, top, bottom).
pad = (0, 0, kernel_size[0] - 1 - lookahead, lookahead)
layers = list()
if any(x > 0 for x in pad):
layers.append(nn.ConstantPad2d(pad, 0.0))
groups = math.gcd(in_channels, out_channels) if separable else 1
if groups == 1:
separable = False
if max(kernel_size) == 1:
separable = False
layers.append(
nn.Conv2d(
in_channels,
out_channels,
kernel_size=kernel_size,
padding=(0, fpad_),
stride=(1, fstride), # stride over time is always 1
dilation=(1, dilation), # dilation over time is always 1
groups=groups,
bias=bias,
)
)
if separable:
layers.append(
nn.Conv2d(
out_channels,
out_channels,
kernel_size=1,
bias=False,
)
)
if norm_layer is not None:
norm_layer = norm_layer_dict[norm_layer]
layers.append(norm_layer(out_channels))
if activation_layer is not None:
activation_layer = activation_layer_dict[activation_layer]
layers.append(activation_layer())
super().__init__(*layers)
def forward(self, inputs):
for module in self:
inputs = module(inputs)
return inputs
class CausalConvTranspose2d(nn.Sequential):
def __init__(self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Iterable[int]],
fstride: int = 1,
dilation: int = 1,
fpad: bool = True,
bias: bool = True,
separable: bool = False,
norm_layer: str = "batch_norm_2d",
activation_layer: str = "relu",
lookahead: int = 0
):
"""
Causal ConvTranspose2d.
Expected input format: [batch_size, channels, time_steps, spec_dim]
"""
super(CausalConvTranspose2d, self).__init__()
kernel_size = (kernel_size, kernel_size) if isinstance(kernel_size, int) else kernel_size
if fpad:
fpad_ = kernel_size[1] // 2
else:
fpad_ = 0
# for last 2 dim, pad (left, right, top, bottom).
pad = (0, 0, kernel_size[0] - 1 - lookahead, lookahead)
layers = []
if any(x > 0 for x in pad):
layers.append(nn.ConstantPad2d(pad, 0.0))
groups = math.gcd(in_channels, out_channels) if separable else 1
if groups == 1:
separable = False
layers.append(
nn.ConvTranspose2d(
in_channels,
out_channels,
kernel_size=kernel_size,
padding=(kernel_size[0] - 1, fpad_ + dilation - 1),
output_padding=(0, fpad_),
stride=(1, fstride), # stride over time is always 1
dilation=(1, dilation), # dilation over time is always 1
groups=groups,
bias=bias,
)
)
if separable:
layers.append(
nn.Conv2d(
out_channels,
out_channels,
kernel_size=1,
bias=False,
)
)
if norm_layer is not None:
norm_layer = norm_layer_dict[norm_layer]
layers.append(norm_layer(out_channels))
if activation_layer is not None:
activation_layer = activation_layer_dict[activation_layer]
layers.append(activation_layer())
super().__init__(*layers)
class GroupedLinear(nn.Module):
def __init__(self, input_size: int, hidden_size: int, groups: int = 1):
super().__init__()
# self.weight: Tensor
self.input_size = input_size
self.hidden_size = hidden_size
self.groups = groups
assert input_size % groups == 0, f"Input size {input_size} not divisible by {groups}"
assert hidden_size % groups == 0, f"Hidden size {hidden_size} not divisible by {groups}"
self.ws = input_size // groups
self.register_parameter(
"weight",
torch.nn.Parameter(
torch.zeros(groups, input_size // groups, hidden_size // groups), requires_grad=True
),
)
self.reset_parameters()
def reset_parameters(self):
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) # type: ignore
def forward(self, x: torch.Tensor) -> torch.Tensor:
# x: [..., I]
b, t, _ = x.shape
# new_shape = list(x.shape)[:-1] + [self.groups, self.ws]
new_shape = (b, t, self.groups, self.ws)
x = x.view(new_shape)
# The better way, but not supported by torchscript
# x = x.unflatten(-1, (self.groups, self.ws)) # [..., G, I/G]
x = torch.einsum("btgi,gih->btgh", x, self.weight) # [..., G, H/G]
x = x.flatten(2, 3) # [B, T, H]
return x
def __repr__(self):
cls = self.__class__.__name__
return f"{cls}(input_size: {self.input_size}, hidden_size: {self.hidden_size}, groups: {self.groups})"
class SqueezedGRU_S(nn.Module):
"""
SGE net: Video object detection with squeezed GRU and information entropy map
https://arxiv.org/abs/2106.07224
"""
def __init__(
self,
input_size: int,
hidden_size: int,
output_size: Optional[int] = None,
num_layers: int = 1,
linear_groups: int = 8,
batch_first: bool = True,
skip_op: str = "none",
activation_layer: str = "identity",
):
super().__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.linear_in = nn.Sequential(
GroupedLinear(
input_size=input_size,
hidden_size=hidden_size,
groups=linear_groups,
),
activation_layer_dict[activation_layer](),
)
# gru skip operator
self.gru_skip_op = None
if skip_op == "none":
self.gru_skip_op = None
elif skip_op == "identity":
if not input_size != output_size:
raise AssertionError("Dimensions do not match")
self.gru_skip_op = nn.Identity()
elif skip_op == "grouped_linear":
self.gru_skip_op = GroupedLinear(
input_size=hidden_size,
hidden_size=hidden_size,
groups=linear_groups,
)
else:
raise NotImplementedError()
self.gru = nn.GRU(
input_size=hidden_size,
hidden_size=hidden_size,
num_layers=num_layers,
batch_first=batch_first,
bidirectional=False,
)
if output_size is not None:
self.linear_out = nn.Sequential(
GroupedLinear(
input_size=hidden_size,
hidden_size=output_size,
groups=linear_groups,
),
activation_layer_dict[activation_layer](),
)
else:
self.linear_out = nn.Identity()
def forward(self, inputs: torch.Tensor, h=None) -> Tuple[torch.Tensor, torch.Tensor]:
x = self.linear_in(inputs)
x, h = self.gru.forward(x, h)
x = self.linear_out(x)
if self.gru_skip_op is not None:
x = x + self.gru_skip_op(inputs)
return x, h
class Add(nn.Module):
def forward(self, a, b):
return a + b
class Concat(nn.Module):
def forward(self, a, b):
return torch.cat((a, b), dim=-1)
class Encoder(nn.Module):
def __init__(self, config: DfNetConfig):
super(Encoder, self).__init__()
self.embedding_input_size = config.conv_channels * config.spec_bins // 4
self.embedding_output_size = config.conv_channels * config.spec_bins // 4
self.embedding_hidden_size = config.embedding_hidden_size
self.spec_conv0 = CausalConv2d(
in_channels=1,
out_channels=config.conv_channels,
kernel_size=config.conv_kernel_size_input,
bias=False,
separable=True,
fstride=1,
lookahead=config.conv_lookahead,
)
self.spec_conv1 = CausalConv2d(
in_channels=config.conv_channels,
out_channels=config.conv_channels,
kernel_size=config.conv_kernel_size_inner,
bias=False,
separable=True,
fstride=2,
lookahead=config.conv_lookahead,
)
self.spec_conv2 = CausalConv2d(
in_channels=config.conv_channels,
out_channels=config.conv_channels,
kernel_size=config.conv_kernel_size_inner,
bias=False,
separable=True,
fstride=2,
lookahead=config.conv_lookahead,
)
self.spec_conv3 = CausalConv2d(
in_channels=config.conv_channels,
out_channels=config.conv_channels,
kernel_size=config.conv_kernel_size_inner,
bias=False,
separable=True,
fstride=1,
lookahead=config.conv_lookahead,
)
self.df_conv0 = CausalConv2d(
in_channels=2,
out_channels=config.conv_channels,
kernel_size=config.conv_kernel_size_input,
bias=False,
separable=True,
fstride=1,
)
self.df_conv1 = CausalConv2d(
in_channels=config.conv_channels,
out_channels=config.conv_channels,
kernel_size=config.conv_kernel_size_inner,
bias=False,
separable=True,
fstride=2,
)
self.df_fc_emb = nn.Sequential(
GroupedLinear(
config.conv_channels * config.df_bins // 2,
self.embedding_input_size,
groups=config.encoder_linear_groups
),
nn.ReLU(inplace=True)
)
if config.encoder_combine_op == "concat":
self.embedding_input_size *= 2
self.combine = Concat()
else:
self.combine = Add()
# emb_gru
if config.spec_bins % 8 != 0:
raise AssertionError("spec_bins should be divisible by 8")
self.emb_gru = SqueezedGRU_S(
self.embedding_input_size,
self.embedding_hidden_size,
output_size=self.embedding_output_size,
num_layers=1,
batch_first=True,
skip_op=config.encoder_emb_skip_op,
linear_groups=config.encoder_emb_linear_groups,
activation_layer="relu",
)
# lsnr
self.lsnr_fc = nn.Sequential(
nn.Linear(self.embedding_output_size, 1),
nn.Sigmoid()
)
self.lsnr_scale = config.lsnr_max - config.lsnr_min
self.lsnr_offset = config.lsnr_min
def forward(self,
feat_power: torch.Tensor,
feat_spec: torch.Tensor,
hidden_state: torch.Tensor = None,
):
# feat_power shape: (batch_size, 1, time_steps, spec_dim)
e0 = self.spec_conv0.forward(feat_power)
e1 = self.spec_conv1.forward(e0)
e2 = self.spec_conv2.forward(e1)
e3 = self.spec_conv3.forward(e2)
# e0 shape: [batch_size, channels, time_steps, spec_dim]
# e1 shape: [batch_size, channels, time_steps, spec_dim // 2]
# e2 shape: [batch_size, channels, time_steps, spec_dim // 4]
# e3 shape: [batch_size, channels, time_steps, spec_dim // 4]
# feat_spec, shape: (batch_size, 2, time_steps, df_bins)
c0 = self.df_conv0(feat_spec)
c1 = self.df_conv1(c0)
# c0 shape: [batch_size, channels, time_steps, df_bins]
# c1 shape: [batch_size, channels, time_steps, df_bins // 2]
cemb = c1.permute(0, 2, 3, 1)
# cemb shape: [batch_size, time_steps, df_bins // 2, channels]
cemb = cemb.flatten(2)
# cemb shape: [batch_size, time_steps, df_bins // 2 * channels]
cemb = self.df_fc_emb(cemb)
# cemb shape: [batch_size, time_steps, spec_dim // 4 * channels]
# e3 shape: [batch_size, channels, time_steps, spec_dim // 4]
emb = e3.permute(0, 2, 3, 1)
# emb shape: [batch_size, time_steps, spec_dim // 4, channels]
emb = emb.flatten(2)
# emb shape: [batch_size, time_steps, spec_dim // 4 * channels]
emb = self.combine(emb, cemb)
# if concat; emb shape: [batch_size, time_steps, spec_dim // 4 * channels * 2]
# if add; emb shape: [batch_size, time_steps, spec_dim // 4 * channels]
emb, h = self.emb_gru.forward(emb, hidden_state)
# emb shape: [batch_size, time_steps, spec_dim // 4 * channels]
# h shape: [batch_size, 1, spec_dim]
lsnr = self.lsnr_fc(emb) * self.lsnr_scale + self.lsnr_offset
# lsnr shape: [batch_size, time_steps, 1]
return e0, e1, e2, e3, emb, c0, lsnr, h
class Decoder(nn.Module):
def __init__(self, config: DfNetConfig):
super(Decoder, self).__init__()
if config.spec_bins % 8 != 0:
raise AssertionError("spec_bins should be divisible by 8")
self.emb_in_dim = config.conv_channels * config.spec_bins // 4
self.emb_out_dim = config.conv_channels * config.spec_bins // 4
self.emb_hidden_dim = config.decoder_emb_hidden_size
self.emb_gru = SqueezedGRU_S(
self.emb_in_dim,
self.emb_hidden_dim,
output_size=self.emb_out_dim,
num_layers=config.decoder_emb_num_layers - 1,
batch_first=True,
skip_op=config.decoder_emb_skip_op,
linear_groups=config.decoder_emb_linear_groups,
activation_layer="relu",
)
self.conv3p = CausalConv2d(
in_channels=config.conv_channels,
out_channels=config.conv_channels,
kernel_size=1,
bias=False,
separable=True,
fstride=1,
lookahead=config.conv_lookahead,
)
self.convt3 = CausalConv2d(
in_channels=config.conv_channels,
out_channels=config.conv_channels,
kernel_size=config.conv_kernel_size_inner,
bias=False,
separable=True,
fstride=1,
lookahead=config.conv_lookahead,
)
self.conv2p = CausalConv2d(
in_channels=config.conv_channels,
out_channels=config.conv_channels,
kernel_size=1,
bias=False,
separable=True,
fstride=1,
lookahead=config.conv_lookahead,
)
self.convt2 = CausalConvTranspose2d(
in_channels=config.conv_channels,
out_channels=config.conv_channels,
kernel_size=config.convt_kernel_size_inner,
bias=False,
separable=True,
fstride=2,
lookahead=config.conv_lookahead,
)
self.conv1p = CausalConv2d(
in_channels=config.conv_channels,
out_channels=config.conv_channels,
kernel_size=1,
bias=False,
separable=True,
fstride=1,
lookahead=config.conv_lookahead,
)
self.convt1 = CausalConvTranspose2d(
in_channels=config.conv_channels,
out_channels=config.conv_channels,
kernel_size=config.convt_kernel_size_inner,
bias=False,
separable=True,
fstride=2,
lookahead=config.conv_lookahead,
)
self.conv0p = CausalConv2d(
in_channels=config.conv_channels,
out_channels=config.conv_channels,
kernel_size=1,
bias=False,
separable=True,
fstride=1,
lookahead=config.conv_lookahead,
)
self.conv0_out = CausalConv2d(
in_channels=config.conv_channels,
out_channels=1,
kernel_size=config.conv_kernel_size_inner,
activation_layer="sigmoid",
bias=False,
separable=True,
fstride=1,
lookahead=config.conv_lookahead,
)
def forward(self, emb, e3, e2, e1, e0) -> torch.Tensor:
# Estimates erb mask
b, _, t, f8 = e3.shape
# emb shape: [batch_size, time_steps, (freq_dim // 4) * conv_channels]
emb, _ = self.emb_gru(emb)
# emb shape: [batch_size, conv_channels, time_steps, freq_dim // 4]
emb = emb.view(b, t, f8, -1).permute(0, 3, 1, 2)
e3 = self.convt3(self.conv3p(e3) + emb)
# e3 shape: [batch_size, conv_channels, time_steps, freq_dim // 4]
e2 = self.convt2(self.conv2p(e2) + e3)
# e2 shape: [batch_size, conv_channels, time_steps, freq_dim // 2]
e1 = self.convt1(self.conv1p(e1) + e2)
# e1 shape: [batch_size, conv_channels, time_steps, freq_dim]
mask = self.conv0_out(self.conv0p(e0) + e1)
# mask shape: [batch_size, 1, time_steps, freq_dim]
return mask
class DfDecoder(nn.Module):
def __init__(self, config: DfNetConfig):
super(DfDecoder, self).__init__()
self.embedding_input_size = config.conv_channels * config.spec_bins // 4
self.df_decoder_hidden_size = config.df_decoder_hidden_size
self.df_num_layers = config.df_num_layers
self.df_order = config.df_order
self.df_bins = config.df_bins
self.df_out_ch = config.df_order * 2
self.df_convp = CausalConv2d(
config.conv_channels,
self.df_out_ch,
fstride=1,
kernel_size=(config.df_pathway_kernel_size_t, 1),
separable=True,
bias=False,
)
self.df_gru = SqueezedGRU_S(
self.embedding_input_size,
self.df_decoder_hidden_size,
num_layers=self.df_num_layers,
batch_first=True,
skip_op="none",
activation_layer="relu",
)
if config.df_gru_skip == "none":
self.df_skip = None
elif config.df_gru_skip == "identity":
if config.embedding_hidden_size != config.df_decoder_hidden_size:
raise AssertionError("Dimensions do not match")
self.df_skip = nn.Identity()
elif config.df_gru_skip == "grouped_linear":
self.df_skip = GroupedLinear(
self.embedding_input_size,
self.df_decoder_hidden_size,
groups=config.df_decoder_linear_groups
)
else:
raise NotImplementedError()
self.df_out: nn.Module
out_dim = self.df_bins * self.df_out_ch
self.df_out = nn.Sequential(
GroupedLinear(
input_size=self.df_decoder_hidden_size,
hidden_size=out_dim,
groups=config.df_decoder_linear_groups
),
nn.Tanh()
)
self.df_fc_a = nn.Sequential(
nn.Linear(self.df_decoder_hidden_size, 1),
nn.Sigmoid()
)
def forward(self, emb: torch.Tensor, c0: torch.Tensor) -> torch.Tensor:
# emb shape: [batch_size, time_steps, df_bins // 4 * channels]
b, t, _ = emb.shape
df_coefs, _ = self.df_gru(emb)
if self.df_skip is not None:
df_coefs = df_coefs + self.df_skip(emb)
# df_coefs shape: [batch_size, time_steps, df_decoder_hidden_size]
# c0 shape: [batch_size, channels, time_steps, df_bins]
c0 = self.df_convp(c0)
# c0 shape: [batch_size, df_order * 2, time_steps, df_bins]
c0 = c0.permute(0, 2, 3, 1)
# c0 shape: [batch_size, time_steps, df_bins, df_order * 2]
df_coefs = self.df_out(df_coefs) # [B, T, F*O*2], O: df_order
# df_coefs shape: [batch_size, time_steps, df_bins * df_order * 2]
df_coefs = df_coefs.view(b, t, self.df_bins, self.df_out_ch)
# df_coefs shape: [batch_size, time_steps, df_bins, df_order * 2]
df_coefs = df_coefs + c0
# df_coefs shape: [batch_size, time_steps, df_bins, df_order * 2]
return df_coefs
class DfOutputReshapeMF(nn.Module):
"""Coefficients output reshape for multiframe/MultiFrameModule
Requires input of shape B, C, T, F, 2.
"""
def __init__(self, df_order: int, df_bins: int):
super().__init__()
self.df_order = df_order
self.df_bins = df_bins
def forward(self, coefs: torch.Tensor) -> torch.Tensor:
# [B, T, F, O*2] -> [B, O, T, F, 2]
new_shape = list(coefs.shape)
new_shape[-1] = -1
new_shape.append(2)
coefs = coefs.view(new_shape)
coefs = coefs.permute(0, 3, 1, 2, 4)
return coefs
class Mask(nn.Module):
def __init__(self, use_post_filter: bool = False, eps: float = 1e-12):
super().__init__()
self.use_post_filter = use_post_filter
self.eps = eps
def post_filter(self, mask: torch.Tensor, beta: float = 0.02) -> torch.Tensor:
"""
Post-Filter
A Perceptually-Motivated Approach for Low-Complexity, Real-Time Enhancement of Fullband Speech.
https://arxiv.org/abs/2008.04259
:param mask: Real valued mask, typically of shape [B, C, T, F].
:param beta: Global gain factor.
:return:
"""
mask_sin = mask * torch.sin(np.pi * mask / 2)
mask_pf = (1 + beta) * mask / (1 + beta * mask.div(mask_sin.clamp_min(self.eps)).pow(2))
return mask_pf
def forward(self, spec: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
# spec shape: [batch_size, 1, time_steps, spec_bins, 2]
if not self.training and self.use_post_filter:
mask = self.post_filter(mask)
# mask shape: [batch_size, 1, time_steps, spec_bins]
mask = mask.unsqueeze(4)
# mask shape: [batch_size, 1, time_steps, spec_bins, 1]
return spec * mask
class DeepFiltering(nn.Module):
def __init__(self,
df_bins: int,
df_order: int,
lookahead: int = 0,
):
super(DeepFiltering, self).__init__()
self.df_bins = df_bins
self.df_order = df_order
self.need_unfold = df_order > 1
self.lookahead = lookahead
self.pad = nn.ConstantPad2d((0, 0, df_order - 1 - lookahead, lookahead), 0.0)
def spec_unfold(self, spec: torch.Tensor):
"""
Pads and unfolds the spectrogram according to frame_size.
:param spec: complex Tensor, Spectrogram of shape [B, C, T, F].
:return: Tensor, Unfolded spectrogram of shape [B, C, T, F, N], where N: frame_size.
"""
if self.need_unfold:
# spec shape: [batch_size, spec_bins, time_steps]
spec_pad = self.pad(spec)
# spec_pad shape: [batch_size, 1, time_steps_pad, spec_bins]
spec_unfold = spec_pad.unfold(2, self.df_order, 1)
# spec_unfold shape: [batch_size, 1, time_steps, spec_bins, df_order]
return spec_unfold
else:
return spec.unsqueeze(-1)
def forward(self,
spec: torch.Tensor,
coefs: torch.Tensor,
):
# spec shape: [batch_size, 1, time_steps, spec_bins, 2]
spec_u = self.spec_unfold(torch.view_as_complex(spec.contiguous()))
# spec_u shape: [batch_size, 1, time_steps, spec_bins, df_order]
# coefs shape: [batch_size, df_order, time_steps, df_bins, 2]
coefs = torch.view_as_complex(coefs.contiguous())
# coefs shape: [batch_size, df_order, time_steps, df_bins]
spec_f = spec_u.narrow(-2, 0, self.df_bins)
# spec_f shape: [batch_size, 1, time_steps, df_bins, df_order]
coefs = coefs.view(coefs.shape[0], -1, self.df_order, *coefs.shape[2:])
# coefs shape: [batch_size, 1, df_order, time_steps, df_bins]
spec_f = self.df(spec_f, coefs)
# spec_f shape: [batch_size, 1, time_steps, df_bins]
if self.training:
spec = spec.clone()
spec[..., :self.df_bins, :] = torch.view_as_real(spec_f)
# spec shape: [batch_size, 1, time_steps, spec_bins, 2]
return spec
@staticmethod
def df(spec: torch.Tensor, coefs: torch.Tensor) -> torch.Tensor:
"""
Deep filter implementation using `torch.einsum`. Requires unfolded spectrogram.
:param spec: (complex Tensor). Spectrogram of shape [B, C, T, F, N].
:param coefs: (complex Tensor). Coefficients of shape [B, C, N, T, F].
:return: (complex Tensor). Spectrogram of shape [B, C, T, F].
"""
return torch.einsum("...tfn,...ntf->...tf", spec, coefs)
class DfNet(nn.Module):
def __init__(self, config: DfNetConfig):
super(DfNet, self).__init__()
self.config = config
self.freq_bins = self.config.nfft // 2 + 1
self.nfft = config.nfft
self.win_size = config.win_size
self.hop_size = config.hop_size
self.win_type = config.win_type
self.stft = ConvSTFT(
nfft=config.nfft,
win_size=config.win_size,
hop_size=config.hop_size,
win_type=config.win_type,
feature_type="complex",
requires_grad=False
)
self.istft = ConviSTFT(
nfft=config.nfft,
win_size=config.win_size,
hop_size=config.hop_size,
win_type=config.win_type,
feature_type="complex",
requires_grad=False
)
self.encoder = Encoder(config)
self.decoder = Decoder(config)
self.df_decoder = DfDecoder(config)
self.df_out_transform = DfOutputReshapeMF(config.df_order, config.df_bins)
self.df_op = DeepFiltering(
df_bins=config.df_bins,
df_order=config.df_order,
lookahead=config.df_lookahead,
)
self.mask = Mask(use_post_filter=config.use_post_filter)
def forward(self,
noisy: torch.Tensor,
):
if noisy.dim() == 2:
noisy = torch.unsqueeze(noisy, dim=1)
_, _, n_samples = noisy.shape
remainder = (n_samples - self.win_size) % self.hop_size
if remainder > 0:
n_samples_pad = self.hop_size - remainder
noisy = F.pad(noisy, pad=(0, n_samples_pad), mode="constant", value=0)
# [batch_size, freq_bins * 2, time_steps]
cmp_spec = self.stft.forward(noisy)
# [batch_size, 1, freq_bins * 2, time_steps]
cmp_spec = torch.unsqueeze(cmp_spec, 1)
# [batch_size, 2, freq_bins, time_steps]
cmp_spec = torch.cat([
cmp_spec[:, :, :self.freq_bins, :],
cmp_spec[:, :, self.freq_bins:, :],
], dim=1)
# n//2+1 -> n//2; 257 -> 256
cmp_spec = cmp_spec[:, :, :-1, :]
spec = torch.unsqueeze(cmp_spec, dim=4)
# [batch_size, 2, freq_bins, time_steps, 1]
spec = spec.permute(0, 4, 3, 2, 1)
# spec shape: [batch_size, 1, time_steps, freq_bins, 2]
feat_power = torch.sum(torch.square(spec), dim=-1)
# feat_power shape: [batch_size, 1, time_steps, spec_bins]
feat_spec = torch.transpose(cmp_spec, dim0=2, dim1=3)
# feat_spec shape: [batch_size, 2, time_steps, freq_bins]
feat_spec = feat_spec[..., :self.df_decoder.df_bins]
# feat_spec shape: [batch_size, 2, time_steps, df_bins]
e0, e1, e2, e3, emb, c0, lsnr, h = self.encoder.forward(feat_power, feat_spec)
mask = self.decoder.forward(emb, e3, e2, e1, e0)
# mask shape: [batch_size, 1, time_steps, spec_bins]
if torch.any(mask > 1) or torch.any(mask < 0):
raise AssertionError
spec_m = self.mask.forward(spec, mask)
# lsnr shape: [batch_size, time_steps, 1]
lsnr = torch.transpose(lsnr, dim0=2, dim1=1)
# lsnr shape: [batch_size, 1, time_steps]
df_coefs = self.df_decoder.forward(emb, c0)
df_coefs = self.df_out_transform(df_coefs)
# df_coefs shape: [batch_size, df_order, time_steps, df_bins, 2]
spec_e = self.df_op.forward(spec.clone(), df_coefs)
# est_spec shape: [batch_size, 1, time_steps, spec_bins, 2]
spec_e[..., self.df_decoder.df_bins:, :] = spec_m[..., self.df_decoder.df_bins:, :]
spec_e = torch.squeeze(spec_e, dim=1)
spec_e = spec_e.permute(0, 2, 1, 3)
# spec_e shape: [batch_size, spec_bins, time_steps, 2]
mask = torch.squeeze(mask, dim=1)
est_mask = mask.permute(0, 2, 1)
# mask shape: [batch_size, spec_bins, time_steps]
b, _, t, _ = spec_e.shape
est_spec = torch.cat(tensors=[
torch.concat(tensors=[
spec_e[..., 0],
torch.zeros(size=(b, 1, t), dtype=spec_e.dtype).to(spec_e.device)
], dim=1),
torch.concat(tensors=[
spec_e[..., 1],
torch.zeros(size=(b, 1, t), dtype=spec_e.dtype).to(spec_e.device)
], dim=1),
], dim=1)
# est_spec shape: [b, n+2, t]
est_wav = self.istft.forward(est_spec)
est_wav = torch.squeeze(est_wav, dim=1)
est_wav = est_wav[:, :n_samples]
# est_wav shape: [b, n_samples]
return est_spec, est_wav, est_mask, lsnr
def mask_loss_fn(self, est_mask: torch.Tensor, clean: torch.Tensor, noisy: torch.Tensor):
"""
:param est_mask: torch.Tensor, shape: [b, n+2, t]
:param clean:
:param noisy:
:return:
"""
clean_stft = self.stft(clean)
clean_re = clean_stft[:, :self.freq_bins, :]
clean_im = clean_stft[:, self.freq_bins:, :]
noisy_stft = self.stft(noisy)
noisy_re = noisy_stft[:, :self.freq_bins, :]
noisy_im = noisy_stft[:, self.freq_bins:, :]
noisy_power = noisy_re ** 2 + noisy_im ** 2
sr = clean_re
yr = noisy_re
si = clean_im
yi = noisy_im
y_pow = noisy_power
# (Sr * Yr + Si * Yi) / (Y_pow + 1e-8)
gth_mask_re = (sr * yr + si * yi) / (y_pow + self.eps)
# (Si * Yr - Sr * Yi) / (Y_pow + 1e-8)
gth_mask_im = (sr * yr - si * yi) / (y_pow + self.eps)
gth_mask_re[gth_mask_re > 2] = 1
gth_mask_re[gth_mask_re < -2] = -1
gth_mask_im[gth_mask_im > 2] = 1
gth_mask_im[gth_mask_im < -2] = -1
mask_re = est_mask[:, :self.freq_bins, :]
mask_im = est_mask[:, self.freq_bins:, :]
loss_re = F.mse_loss(gth_mask_re, mask_re)
loss_im = F.mse_loss(gth_mask_im, mask_im)
loss = loss_re + loss_im
return loss
class DfNetPretrainedModel(DfNet):
def __init__(self,
config: DfNetConfig,
):
super(DfNetPretrainedModel, self).__init__(
config=config,
)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
config = DfNetConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
model = cls(config)
if os.path.isdir(pretrained_model_name_or_path):
ckpt_file = os.path.join(pretrained_model_name_or_path, MODEL_FILE)
else:
ckpt_file = pretrained_model_name_or_path
with open(ckpt_file, "rb") as f:
state_dict = torch.load(f, map_location="cpu", weights_only=True)
model.load_state_dict(state_dict, strict=True)
return model
def save_pretrained(self,
save_directory: Union[str, os.PathLike],
state_dict: Optional[dict] = None,
):
model = self
if state_dict is None:
state_dict = model.state_dict()
os.makedirs(save_directory, exist_ok=True)
# save state dict
model_file = os.path.join(save_directory, MODEL_FILE)
torch.save(state_dict, model_file)
# save config
config_file = os.path.join(save_directory, CONFIG_FILE)
self.config.to_yaml_file(config_file)
return save_directory
def main():
config = DfNetConfig()
model = DfNetPretrainedModel(config=config)
noisy = torch.randn(size=(1, 16000), dtype=torch.float32)
output = model.forward(noisy)
print(output[1].shape)
return
if __name__ == "__main__":
main()
|