Spaces:
Running
Running
File size: 11,817 Bytes
4464055 33d6ee9 1e55fa2 33d6ee9 4464055 ea948a7 4464055 ea948a7 4464055 ea948a7 4464055 ea948a7 4464055 ea948a7 4464055 fa5f1d9 102bd7c fa5f1d9 4464055 ea948a7 33d6ee9 ea948a7 33d6ee9 ea948a7 33d6ee9 ea948a7 33d6ee9 ea948a7 fa5f1d9 ea948a7 dbd1ddd ea948a7 4464055 ea948a7 102bd7c ea948a7 33d6ee9 4464055 ea948a7 4464055 ea948a7 c95dc2f dbd1ddd c95dc2f ea948a7 97eebc6 ea948a7 20b9748 33d6ee9 20b9748 97eebc6 20b9748 97eebc6 4464055 fa5f1d9 4464055 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
docker build -t llm_eval_system:v20250724_1442 .
docker stop llm_eval_system_7862 && docker rm llm_eval_system_7862
docker run -itd \
--name llm_eval_system_7862 \
--restart=always \
--network host \
-e port=7862 \
llm_eval_system:v20250724_1442 \
/bin/bash
docker run -itd \
--name llm_eval_system_7862 \
--restart=always \
--network host \
-v /data/tianxing/PycharmProjects/llm_eval_system:/data/tianxing/PycharmProjects/llm_eval_system \
python:3.12 \
/bin/bash
nohup python3 main.py --server_port 7862 &
"""
import argparse
import json
import logging
from pathlib import Path
import platform
from typing import Tuple, List
import time
import gradio as gr
import numpy as np
import pandas as pd
from project_settings import environment, project_path, log_directory
from toolbox.os.command import Command
import log
from tabs.fs_tab import get_fs_tab
from tabs.shell_tab import get_shell_tab
log.setup_size_rotating(log_directory=log_directory)
logger = logging.getLogger("main")
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--eval_data_dir",
default=(project_path / "data/eval_data").as_posix(),
type=str,
)
parser.add_argument(
"--server_port",
default=7860,
type=int,
)
args = parser.parse_args()
return args
css = """
#dataset_df th:nth-child(1), #dataset_df td:nth-child(1) {
max-width: 50px !important; /* 第一列 */
}
#dataset_df th:nth-child(2), #dataset_df td:nth-child(2) {
max-width: 500px !important; /* 第二列 */
}
#dataset_df th:nth-child(3), #dataset_df td:nth-child(3) {
max-width: 50px !important; /* 第三列 */
}
#view_chat_df th:nth-child(1), #view_chat_df td:nth-child(1) {
max-width: 50px !important; /* 第一列 */
}
#view_chat_df th:nth-child(2), #view_chat_df td:nth-child(2) {
max-width: 500px !important; /* 第二列 */
}
#view_chat_df th:nth-child(3), #view_chat_df td:nth-child(3) {
max-width: 400px !important; /* 第三列 */
}
#view_chat_df th:nth-child(4), #view_chat_df td:nth-child(4) {
max-width: 400px !important; /* 第四列 */
}
#view_chat_df th:nth-child(5), #view_chat_df td:nth-child(5) {
max-width: 400px !important; /* 第五列 */
}
#view_chat_df th:nth-child(6), #view_chat_df td:nth-child(6) {
max-width: 80px !important; /* 第六列 */
}
"""
eval_data_dir: Path = None
llm_ranking: pd.DataFrame = None
last_update_ts: float = 0
update_interval = 1 * 60 * 60
def load_board():
result = list()
for filename in eval_data_dir.glob("**/*.jsonl"):
name = filename.stem
dataset = filename.parts[-1]
date = filename.parts[-2]
service = filename.parts[-3]
client = filename.parts[-4]
model_name = filename.parts[-5]
company = filename.parts[-6]
script = filename.parts[-7]
if date.endswith("-delete"):
continue
# if name.endswith("-chat"):
# continue
score_list = list()
time_cost_list = list()
total = 0
with open(filename.as_posix(), "r", encoding="utf-8") as f:
for row in f:
try:
row = json.loads(row)
except Exception as e:
print(f"json load row failed. error type: {type(e)}, error text: {str(e)}")
logger.error(f"json load row failed. error type: {type(e)}, error text: {str(e)}")
raise e
if name.endswith("-choice"):
score_ = row["correct"]
elif name.endswith("-chat"):
score_ = row["score"]
elif name.endswith("-summary"):
score_ = row["score"]
else:
raise AssertionError
time_cost_ = row["time_cost"]
score_list.append(score_)
time_cost_list.append(time_cost_)
total += 1
if total == 0:
continue
score = np.mean(score_list)
time_cost_mean = np.mean(time_cost_list)
time_cost_var = np.var(time_cost_list)
time_cost_p75 = np.percentile(time_cost_list, 95)
time_cost_p95 = np.percentile(time_cost_list, 95)
time_cost_p99 = np.percentile(time_cost_list, 99)
row_ = {
"company": company,
"model_name": model_name,
"dataset": dataset,
"score": round(score, 4),
"time_cost(mean)": round(time_cost_mean, 4),
"time_cost(var)": round(time_cost_var, 4),
"time_cost(75%)": round(time_cost_p75, 4),
"time_cost(95%)": round(time_cost_p95, 4),
"time_cost(99%)": round(time_cost_p99, 4),
"service": service,
"client": client,
"script": f"{script}.py",
"version": date,
"count": total,
}
result.append(row_)
result = pd.DataFrame(result)
return result
def load_board_lazy():
global llm_ranking
global last_update_ts
now = time.time()
if now - last_update_ts > update_interval:
llm_ranking = load_board()
last_update_ts = now
return llm_ranking
def when_click_board_button(columns: List[str]):
result = load_board_lazy()
try:
result = result[columns]
except KeyError as e:
raise gr.Error(f"{str(e)}, columns: {list(result.columns)}")
return result
def when_click_view_dataset_button(filename: str):
filename = (project_path / filename).as_posix()
result = list()
with open(filename, "r", encoding="utf-8") as f:
for row in f:
row = json.loads(row)
result.append(row)
result = pd.DataFrame(result)
return result
def when_click_view_chat_button(filename: str):
filename = (project_path / filename).as_posix()
result = list()
with open(filename, "r", encoding="utf-8") as f:
for row in f:
row = json.loads(row)
idx = row["idx"]
prompt: str = row["prompt"]
conversation = prompt.split("\n\n")[-1].strip()
response = row["response"]
prediction = row["prediction"]
evaluate = row["evaluate"]
score = row["score"]
row_ = {
"idx": idx,
"conversation": conversation,
"response": response,
"prediction": prediction,
"evaluate": json.dumps(evaluate, ensure_ascii=False, indent=4),
"score": score,
}
result.append(row_)
result = pd.DataFrame(result)
return result
board_columns_choices = [
"company", "model_name", "dataset", "score",
"time_cost(mean)",
"time_cost(var)",
"time_cost(75%)", "time_cost(95%)", "time_cost(99%)",
"service", "client",
"script", "version", "count"
]
board_columns_choices_default_value = [
"company", "model_name", "dataset", "score",
"time_cost(mean)",
"time_cost(var)",
# "time_cost(75%)", "time_cost(95%)", "time_cost(99%)",
]
dataset_examples_list = [
[
"arc-easy-1000-choice.jsonl",
"ARC(AI2 推理挑战赛)\nAI2 的推理挑战赛 (ARC) 数据集是一个多项选择题问答数据集,包含 3 年级至 9 年级的科学考试题目。\n该数据集分为两个部分:简单部分和挑战部分。\n\n从简单部分取前1000条作为 arc-easy-1000-choice.jsonl",
"data/dataset/arc-easy-1000-choice.jsonl"
],
[
"agent-lingoace-zh-400-choice.jsonl",
"lingoace数据集。",
"data/dataset/agent-lingoace-zh-400-choice.jsonl"
],
]
def main():
args = get_args()
global eval_data_dir
global llm_ranking
eval_data_dir = Path(args.eval_data_dir)
llm_ranking_board = when_click_board_button(board_columns_choices_default_value)
# chat
chat_eval_data_examples = list()
for filename in eval_data_dir.glob("**/*-chat.jsonl"):
dataset = filename.parts[-1]
model_name = filename.parts[-5]
company = filename.parts[-6]
chat_eval_data_examples.append([
company, model_name, dataset, filename.as_posix()
])
# ui
with gr.Blocks(css=css) as blocks:
with gr.Tabs():
with gr.TabItem("board"):
board_columns = gr.CheckboxGroup(
choices=board_columns_choices,
value=board_columns_choices_default_value,
label="columns"
)
board_button = gr.Button(value="View", variant="primary", visible=True)
board_board = gr.DataFrame(
value=llm_ranking_board,
max_height=800, min_width=160,
label="board",
# interactive=True,
show_search="search"
)
board_button.click(
fn=when_click_board_button,
inputs=[board_columns],
outputs=[board_board],
)
with gr.TabItem("view_chat"):
view_chat_company = gr.Textbox(label="company", visible=False)
view_chat_model_name = gr.Textbox(label="model_name", visible=False)
view_chat_dataset = gr.Textbox(label="dataset", visible=False)
view_chat_filename = gr.Textbox(label="filename", visible=True)
gr.Examples(
examples=chat_eval_data_examples,
inputs=[view_chat_company, view_chat_model_name, view_chat_dataset, view_chat_filename],
outputs=None,
)
with gr.Row():
view_chat_button = gr.Button(value="View", variant="primary", visible=True)
view_chat_df = gr.DataFrame(
value=None,
max_height = 1000, min_width = 160,
label="dataset", interactive=True,
show_search="search",
elem_id="view_chat_df"
)
view_chat_button.click(
fn=when_click_view_chat_button,
inputs=[view_chat_filename],
outputs=[view_chat_df],
)
with gr.TabItem("dataset"):
dataset_name = gr.Textbox(label="name")
dataset_desc = gr.Textbox(label="desc")
dataset_filename = gr.Textbox(label="filename")
gr.Examples(
examples=dataset_examples_list,
inputs=[dataset_name, dataset_desc, dataset_filename],
outputs=None,
)
dataset_button = gr.Button(value="View", variant="primary", visible=True)
dataset_df = gr.DataFrame(
value=None, label="dataset", interactive=True,
show_search="search",
elem_id="dataset_df"
)
dataset_button.click(
fn=when_click_view_dataset_button,
inputs=[dataset_filename],
outputs=[dataset_df],
)
_ = get_fs_tab()
_ = get_shell_tab()
# http://127.0.0.1:7861/
# http://10.75.27.247:7861/
blocks.queue().launch(
share=False if platform.system() == "Windows" else False,
server_name="127.0.0.1" if platform.system() == "Windows" else "0.0.0.0",
# server_name="0.0.0.0",
server_port=environment.get("port", default=args.server_port, dtype=int),
)
return
if __name__ == "__main__":
main()
|