File size: 11,817 Bytes
4464055
 
 
 
 
 
 
 
 
 
 
 
 
 
33d6ee9
 
 
 
 
1e55fa2
33d6ee9
 
 
 
4464055
 
ea948a7
4464055
ea948a7
4464055
ea948a7
 
4464055
 
ea948a7
 
4464055
 
 
 
ea948a7
 
4464055
 
 
 
 
 
 
 
 
 
 
 
 
fa5f1d9
 
102bd7c
fa5f1d9
 
4464055
 
 
 
ea948a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33d6ee9
ea948a7
 
33d6ee9
ea948a7
 
33d6ee9
ea948a7
 
33d6ee9
ea948a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa5f1d9
 
 
 
 
 
ea948a7
 
 
 
dbd1ddd
 
ea948a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4464055
 
 
 
 
ea948a7
 
 
 
 
102bd7c
ea948a7
33d6ee9
 
 
 
 
 
 
 
 
 
4464055
ea948a7
4464055
ea948a7
 
 
 
 
 
 
c95dc2f
 
 
 
dbd1ddd
 
c95dc2f
ea948a7
97eebc6
 
 
 
ea948a7
20b9748
33d6ee9
 
 
 
 
 
 
 
 
20b9748
 
 
97eebc6
 
 
20b9748
 
 
 
 
 
 
 
97eebc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4464055
 
 
 
 
 
 
fa5f1d9
4464055
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
docker build -t llm_eval_system:v20250724_1442 .

docker stop llm_eval_system_7862 && docker rm llm_eval_system_7862

docker run -itd \
--name llm_eval_system_7862 \
--restart=always \
--network host \
-e port=7862 \
llm_eval_system:v20250724_1442 \
/bin/bash

docker run -itd \
--name llm_eval_system_7862 \
--restart=always \
--network host \
-v /data/tianxing/PycharmProjects/llm_eval_system:/data/tianxing/PycharmProjects/llm_eval_system \
python:3.12 \
/bin/bash

nohup python3 main.py --server_port 7862 &
"""
import argparse
import json
import logging
from pathlib import Path
import platform
from typing import Tuple, List
import time

import gradio as gr
import numpy as np
import pandas as pd

from project_settings import environment, project_path, log_directory
from toolbox.os.command import Command
import log
from tabs.fs_tab import get_fs_tab
from tabs.shell_tab import get_shell_tab

log.setup_size_rotating(log_directory=log_directory)

logger = logging.getLogger("main")


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--eval_data_dir",
        default=(project_path / "data/eval_data").as_posix(),
        type=str,
    )
    parser.add_argument(
        "--server_port",
        default=7860,
        type=int,
    )
    args = parser.parse_args()
    return args


css = """
#dataset_df th:nth-child(1), #dataset_df td:nth-child(1) {
    max-width: 50px !important; /* 第一列 */
}
#dataset_df th:nth-child(2), #dataset_df td:nth-child(2) {
    max-width: 500px !important; /* 第二列 */
}
#dataset_df th:nth-child(3), #dataset_df td:nth-child(3) {
    max-width: 50px !important; /* 第三列 */
}

#view_chat_df th:nth-child(1), #view_chat_df td:nth-child(1) {
    max-width: 50px !important; /* 第一列 */
}
#view_chat_df th:nth-child(2), #view_chat_df td:nth-child(2) {
    max-width: 500px !important; /* 第二列 */
}
#view_chat_df th:nth-child(3), #view_chat_df td:nth-child(3) {
    max-width: 400px !important; /* 第三列 */
}
#view_chat_df th:nth-child(4), #view_chat_df td:nth-child(4) {
    max-width: 400px !important; /* 第四列 */
}
#view_chat_df th:nth-child(5), #view_chat_df td:nth-child(5) {
    max-width: 400px !important; /* 第五列 */
}
#view_chat_df th:nth-child(6), #view_chat_df td:nth-child(6) {
    max-width: 80px !important; /* 第六列 */
}
"""

eval_data_dir: Path = None
llm_ranking: pd.DataFrame = None
last_update_ts: float = 0
update_interval = 1 * 60 * 60


def load_board():
    result = list()
    for filename in eval_data_dir.glob("**/*.jsonl"):
        name = filename.stem
        dataset = filename.parts[-1]
        date = filename.parts[-2]
        service = filename.parts[-3]
        client = filename.parts[-4]
        model_name = filename.parts[-5]
        company = filename.parts[-6]
        script = filename.parts[-7]

        if date.endswith("-delete"):
            continue
        # if name.endswith("-chat"):
        #     continue

        score_list = list()
        time_cost_list = list()
        total = 0

        with open(filename.as_posix(), "r", encoding="utf-8") as f:
            for row in f:
                try:
                    row = json.loads(row)
                except Exception as e:
                    print(f"json load row failed. error type: {type(e)}, error text: {str(e)}")
                    logger.error(f"json load row failed. error type: {type(e)}, error text: {str(e)}")
                    raise e
                if name.endswith("-choice"):
                    score_ = row["correct"]
                elif name.endswith("-chat"):
                    score_ = row["score"]
                elif name.endswith("-summary"):
                    score_ = row["score"]
                else:
                    raise AssertionError

                time_cost_ = row["time_cost"]

                score_list.append(score_)
                time_cost_list.append(time_cost_)
                total += 1

        if total == 0:
            continue
        score = np.mean(score_list)
        time_cost_mean = np.mean(time_cost_list)
        time_cost_var = np.var(time_cost_list)

        time_cost_p75 = np.percentile(time_cost_list, 95)
        time_cost_p95 = np.percentile(time_cost_list, 95)
        time_cost_p99 = np.percentile(time_cost_list, 99)

        row_ = {
            "company": company,
            "model_name": model_name,
            "dataset": dataset,
            "score": round(score, 4),
            "time_cost(mean)": round(time_cost_mean, 4),
            "time_cost(var)": round(time_cost_var, 4),
            "time_cost(75%)": round(time_cost_p75, 4),
            "time_cost(95%)": round(time_cost_p95, 4),
            "time_cost(99%)": round(time_cost_p99, 4),
            "service": service,
            "client": client,
            "script": f"{script}.py",
            "version": date,
            "count": total,
        }
        result.append(row_)
    result = pd.DataFrame(result)
    return result


def load_board_lazy():
    global llm_ranking
    global last_update_ts

    now = time.time()
    if now - last_update_ts > update_interval:
        llm_ranking = load_board()
        last_update_ts = now

    return llm_ranking


def when_click_board_button(columns: List[str]):
    result = load_board_lazy()

    try:
        result = result[columns]
    except KeyError as e:
        raise gr.Error(f"{str(e)}, columns: {list(result.columns)}")
    return result


def when_click_view_dataset_button(filename: str):
    filename = (project_path / filename).as_posix()
    result = list()
    with open(filename, "r", encoding="utf-8") as f:
        for row in f:
            row = json.loads(row)
            result.append(row)
    result = pd.DataFrame(result)
    return result


def when_click_view_chat_button(filename: str):
    filename = (project_path / filename).as_posix()
    result = list()
    with open(filename, "r", encoding="utf-8") as f:
        for row in f:
            row = json.loads(row)

            idx = row["idx"]
            prompt: str = row["prompt"]
            conversation = prompt.split("\n\n")[-1].strip()
            response = row["response"]
            prediction = row["prediction"]
            evaluate = row["evaluate"]
            score = row["score"]

            row_ = {
                "idx": idx,
                "conversation": conversation,
                "response": response,
                "prediction": prediction,
                "evaluate": json.dumps(evaluate, ensure_ascii=False, indent=4),
                "score": score,
            }
            result.append(row_)
    result = pd.DataFrame(result)
    return result



board_columns_choices = [
    "company", "model_name", "dataset", "score",
    "time_cost(mean)",
    "time_cost(var)",
    "time_cost(75%)", "time_cost(95%)", "time_cost(99%)",
    "service", "client",
    "script", "version", "count"
]
board_columns_choices_default_value = [
    "company", "model_name", "dataset", "score",
    "time_cost(mean)",
    "time_cost(var)",
    # "time_cost(75%)", "time_cost(95%)", "time_cost(99%)",
]
dataset_examples_list = [
    [
        "arc-easy-1000-choice.jsonl",
        "ARC(AI2 推理挑战赛)\nAI2 的推理挑战赛 (ARC) 数据集是一个多项选择题问答数据集,包含 3 年级至 9 年级的科学考试题目。\n该数据集分为两个部分:简单部分和挑战部分。\n\n从简单部分取前1000条作为 arc-easy-1000-choice.jsonl",
        "data/dataset/arc-easy-1000-choice.jsonl"
    ],
    [
        "agent-lingoace-zh-400-choice.jsonl",
        "lingoace数据集。",
        "data/dataset/agent-lingoace-zh-400-choice.jsonl"
    ],
]


def main():
    args = get_args()

    global eval_data_dir
    global llm_ranking

    eval_data_dir = Path(args.eval_data_dir)

    llm_ranking_board = when_click_board_button(board_columns_choices_default_value)

    # chat
    chat_eval_data_examples = list()
    for filename in eval_data_dir.glob("**/*-chat.jsonl"):
        dataset = filename.parts[-1]
        model_name = filename.parts[-5]
        company = filename.parts[-6]
        chat_eval_data_examples.append([
            company, model_name, dataset, filename.as_posix()
        ])

    # ui
    with gr.Blocks(css=css) as blocks:
        with gr.Tabs():
            with gr.TabItem("board"):
                board_columns = gr.CheckboxGroup(
                    choices=board_columns_choices,
                    value=board_columns_choices_default_value,
                    label="columns"
                )
                board_button = gr.Button(value="View", variant="primary", visible=True)
                board_board = gr.DataFrame(
                    value=llm_ranking_board,
                    max_height=800, min_width=160,
                    label="board",
                    # interactive=True,
                    show_search="search"
                )

                board_button.click(
                    fn=when_click_board_button,
                    inputs=[board_columns],
                    outputs=[board_board],
                )
            with gr.TabItem("view_chat"):
                view_chat_company = gr.Textbox(label="company", visible=False)
                view_chat_model_name = gr.Textbox(label="model_name", visible=False)
                view_chat_dataset = gr.Textbox(label="dataset", visible=False)
                view_chat_filename = gr.Textbox(label="filename", visible=True)
                gr.Examples(
                    examples=chat_eval_data_examples,
                    inputs=[view_chat_company, view_chat_model_name, view_chat_dataset, view_chat_filename],
                    outputs=None,
                )
                with gr.Row():
                    view_chat_button = gr.Button(value="View", variant="primary", visible=True)
                view_chat_df = gr.DataFrame(
                    value=None,
                    max_height = 1000, min_width = 160,
                    label="dataset", interactive=True,
                    show_search="search",
                    elem_id="view_chat_df"
                )
                view_chat_button.click(
                    fn=when_click_view_chat_button,
                    inputs=[view_chat_filename],
                    outputs=[view_chat_df],
                )
            with gr.TabItem("dataset"):
                dataset_name = gr.Textbox(label="name")
                dataset_desc = gr.Textbox(label="desc")
                dataset_filename = gr.Textbox(label="filename")

                gr.Examples(
                    examples=dataset_examples_list,
                    inputs=[dataset_name, dataset_desc, dataset_filename],
                    outputs=None,
                )
                dataset_button = gr.Button(value="View", variant="primary", visible=True)
                dataset_df = gr.DataFrame(
                    value=None, label="dataset", interactive=True,
                    show_search="search",
                    elem_id="dataset_df"
                )
                dataset_button.click(
                    fn=when_click_view_dataset_button,
                    inputs=[dataset_filename],
                    outputs=[dataset_df],
                )
            _ = get_fs_tab()
            _ = get_shell_tab()

    # http://127.0.0.1:7861/
    # http://10.75.27.247:7861/
    blocks.queue().launch(
        share=False if platform.system() == "Windows" else False,
        server_name="127.0.0.1" if platform.system() == "Windows" else "0.0.0.0",
        # server_name="0.0.0.0",
        server_port=environment.get("port", default=args.server_port, dtype=int),
    )
    return


if __name__ == "__main__":
    main()