Spaces:
Sleeping
Sleeping
File size: 7,006 Bytes
4464055 4fb65fb 4464055 4fb65fb 4464055 adb1e77 4464055 4fb65fb 4464055 4fb65fb 4464055 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
https://cloud.siliconflow.cn/sft-d1rosn8o8n4s73ftpa1g/playground/chat/17885302852
https://docs.siliconflow.cn/cn/userguide/capabilities/reasoning
Model Name:
Pro/deepseek-ai/DeepSeek-R1
Tips:
(1)thinking_budget: Must be greater than or equal to 1
(2)The selected model requires paid balance. Your paid balance is insufficient. Please top up and try again.
Model Name:
tencent/Hunyuan-A13B-Instruct
Tips:
(1)它在回答时总是会先思考,最后给出答案.这适合知识问答,但不符合我们Agent的需求. 后来强制其只能输出 A-E 中的一个字符(max_tokens=4),以完成评估.
max_tokens=4,
logit_bias={
32: 100,
33: 100,
34: 100,
35: 100,
36: 100,
37: 100,
},
Model Name:
deepseek-ai/DeepSeek-R1
Tips:
(1)为了让它只输出一个字符,设置 max_tokens=3
Model Name:
Qwen/Qwen3-8B
deepseek-ai/DeepSeek-R1-0528-Qwen3-8B
deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
deepseek-ai/DeepSeek-V3
Tips:
(1)为了让它只输出一个字符,设置 max_tokens=1
Model Name:
baidu/ERNIE-4.5-300B-A47B
Tips:
(1)它可能使用的是bpe 分词, logit_bias 注释掉。
"""
import argparse
from datetime import datetime
import json
import os
from pathlib import Path
import sys
import time
from zoneinfo import ZoneInfo # Python 3.9+ 自带,无需安装
pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../"))
from openai import OpenAI
from project_settings import environment, project_path
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
# default="Pro/deepseek-ai/DeepSeek-R1",
# default="tencent/Hunyuan-A13B-Instruct",
default="deepseek-ai/DeepSeek-V3",
# default="Qwen/Qwen3-8B",
# default="deepseek-ai/DeepSeek-R1",
# default="deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
# default="deepseek-ai/DeepSeek-R1-Distill-Qwen-7B",
# default="baidu/ERNIE-4.5-300B-A47B",
type=str
)
parser.add_argument(
"--eval_dataset_name",
default="agent-bingoplus-ph-90-choice.jsonl",
# default="agent-lingoace-zh-400-choice.jsonl",
# default="arc-easy-1000-choice.jsonl",
type=str
)
parser.add_argument(
"--eval_dataset_dir",
default=(project_path / "data/dataset").as_posix(),
type=str
)
parser.add_argument(
"--eval_data_dir",
default=(project_path / "data/eval_data").as_posix(),
type=str
)
parser.add_argument(
"--client",
default="shenzhen_sase",
type=str
)
parser.add_argument(
"--service",
default="siliconflow_api_key",
type=str
)
parser.add_argument(
"--create_time_str",
default="null",
# default="20250728_113641",
type=str
)
parser.add_argument(
"--interval",
default=1,
type=int
)
args = parser.parse_args()
return args
def main():
args = get_args()
eval_dataset_dir = Path(args.eval_dataset_dir)
eval_dataset_dir.mkdir(parents=True, exist_ok=True)
eval_data_dir = Path(args.eval_data_dir)
eval_data_dir.mkdir(parents=True, exist_ok=True)
if args.create_time_str == "null":
tz = ZoneInfo("Asia/Shanghai")
now = datetime.now(tz)
create_time_str = now.strftime("%Y%m%d_%H%M%S")
# create_time_str = "20250724_090615"
else:
create_time_str = args.create_time_str
eval_dataset = eval_dataset_dir / args.eval_dataset_name
model_name_ = args.model_name.replace("/", "#")
output_file = eval_data_dir / f"siliconflow/siliconflow/{model_name_}/{args.client}/{args.service}/{create_time_str}/{args.eval_dataset_name}"
output_file.parent.mkdir(parents=True, exist_ok=True)
api_key = environment.get(args.service, dtype=str)
client = OpenAI(
base_url="https://api.siliconflow.cn/v1/",
# Read your Ark API Key from the environment variable.
api_key=api_key
)
total = 0
total_correct = 0
# finished
finished_idx_set = set()
if os.path.exists(output_file.as_posix()):
with open(output_file.as_posix(), "r", encoding="utf-8") as f:
for row in f:
row = json.loads(row)
idx = row["idx"]
total = row["total"]
total_correct = row["total_correct"]
finished_idx_set.add(idx)
print(f"finished count: {len(finished_idx_set)}")
with open(eval_dataset.as_posix(), "r", encoding="utf-8") as fin, open(output_file.as_posix(), "a+", encoding="utf-8") as fout:
for row in fin:
row = json.loads(row)
idx = row["idx"]
prompt = row["prompt"]
response = row["response"]
if idx in finished_idx_set:
continue
finished_idx_set.add(idx)
try:
time.sleep(args.interval)
print(f"sleep: {args.interval}")
time_begin = time.time()
completion = client.chat.completions.create(
model=args.model_name,
messages=[
{"role": "user", "content": prompt},
],
stream=False,
# max_tokens=4096,
max_tokens=1,
temperature=0.6,
top_p=0.95,
logit_bias={
32: 100,
33: 100,
34: 100,
35: 100,
36: 100,
37: 100,
38: 100,
39: 100,
},
extra_body={
"thinking_budget": 1
}
)
time_cost = time.time() - time_begin
print(f"time_cost: {time_cost}")
except Exception as e:
print(f"request failed, error type: {type(e)}, error text: {str(e)}")
continue
# print(f"completion: {completion}")
prediction = completion.choices[0].message.content
correct = 1 if prediction == response else 0
total += 1
total_correct += correct
score = total_correct / total
row_ = {
"idx": idx,
"prompt": prompt,
"response": response,
"prediction": prediction,
"correct": correct,
"total": total,
"total_correct": total_correct,
"score": score,
"time_cost": time_cost,
}
row_ = json.dumps(row_, ensure_ascii=False)
fout.write(f"{row_}\n")
fout.flush()
return
if __name__ == "__main__":
main()
|