File size: 5,650 Bytes
92a4906
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/claude/use-claude?hl=zh-cn
"""
import argparse
from datetime import datetime
import json
import os
from pathlib import Path
import sys
import time
import tempfile
from zoneinfo import ZoneInfo  # Python 3.9+ 自带,无需安装

pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../"))

from google import genai
from google.genai import types
from anthropic import AnthropicVertex

from project_settings import environment, project_path


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model_name",
        default="claude-opus-4@20250514",
        # default="claude-sonnet-4@20250514",
        type=str
    )
    parser.add_argument(
        "--eval_dataset_name",
        # default="agent-bingoplus-ph-90-choice.jsonl",
        default="agent-lingoace-zh-400-choice.jsonl",
        # default="arc-easy-1000-choice.jsonl",
        type=str
    )
    parser.add_argument(
        "--eval_dataset_dir",
        default=(project_path / "data/dataset").as_posix(),
        type=str
    )
    parser.add_argument(
        "--eval_data_dir",
        default=(project_path / "data/eval_data").as_posix(),
        type=str
    )
    parser.add_argument(
        "--client",
        default="shenzhen_sase",
        type=str
    )
    parser.add_argument(
        "--service",
        # default="google_potent_veld_462405_t3",
        default="google_nxcloud_312303",
        type=str
    )
    parser.add_argument(
        "--create_time_str",
        default="null",
        # default="20250731_162116",
        type=str
    )
    parser.add_argument(
        "--interval",
        default=1,
        type=int
    )
    args = parser.parse_args()
    return args


def main():
    args = get_args()

    service = environment.get(args.service, dtype=json.loads)
    project_id = service["project_id"]

    google_application_credentials = Path(tempfile.gettempdir()) / f"llm_eval_system/{project_id}.json"
    google_application_credentials.parent.mkdir(parents=True, exist_ok=True)

    with open(google_application_credentials.as_posix(), "w", encoding="utf-8") as f:
        content = json.dumps(service, ensure_ascii=False, indent=4)
        f.write(f"{content}\n")

    os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = google_application_credentials.as_posix()

    eval_dataset_dir = Path(args.eval_dataset_dir)
    eval_dataset_dir.mkdir(parents=True, exist_ok=True)
    eval_data_dir = Path(args.eval_data_dir)
    eval_data_dir.mkdir(parents=True, exist_ok=True)

    if args.create_time_str == "null":
        tz = ZoneInfo("Asia/Shanghai")
        now = datetime.now(tz)
        create_time_str = now.strftime("%Y%m%d_%H%M%S")
        # create_time_str = "20250729-interval-5"
    else:
        create_time_str = args.create_time_str

    eval_dataset = eval_dataset_dir / args.eval_dataset_name

    output_file = eval_data_dir / f"google_anthropic/anthropic/{args.model_name}/{args.client}/{args.service}/{create_time_str}/{args.eval_dataset_name}"
    output_file.parent.mkdir(parents=True, exist_ok=True)

    client = AnthropicVertex(project_id=project_id, region="us-east5")

    total = 0
    total_correct = 0

    # finished
    finished_idx_set = set()
    if os.path.exists(output_file.as_posix()):
        with open(output_file.as_posix(), "r", encoding="utf-8") as f:
            for row in f:
                row = json.loads(row)
                idx = row["idx"]
                total = row["total"]
                total_correct = row["total_correct"]
                finished_idx_set.add(idx)
    print(f"finished count: {len(finished_idx_set)}")

    with open(eval_dataset.as_posix(), "r", encoding="utf-8") as fin, open(output_file.as_posix(), "a+", encoding="utf-8") as fout:
        for row in fin:
            row = json.loads(row)
            idx = row["idx"]
            prompt = row["prompt"]
            response = row["response"]

            if idx in finished_idx_set:
                continue
            finished_idx_set.add(idx)

            try:
                time.sleep(args.interval)
                print(f"sleep: {args.interval}")
                time_begin = time.time()
                message = client.messages.create(
                    model=args.model_name,
                    max_tokens=1024,
                    messages=[
                        {
                            "role": "user",
                            "content": prompt,
                        }
                    ],
                )
                time_cost = time.time() - time_begin
                print(f"time_cost: {time_cost}")
            except Exception as e:
                print(f"request failed, error type: {type(e)}, error text: {str(e)}")
                continue

            prediction = message.content[0].text

            correct = 1 if prediction == response else 0

            total += 1
            total_correct += correct
            score = total_correct / total

            row_ = {
                "idx": idx,
                "prompt": prompt,
                "response": response,
                "prediction": prediction,
                "correct": correct,
                "total": total,
                "total_correct": total_correct,
                "score": score,
                "time_cost": time_cost,
            }
            row_ = json.dumps(row_, ensure_ascii=False)
            fout.write(f"{row_}\n")
            fout.flush()

    return


if __name__ == "__main__":
    main()