File size: 6,864 Bytes
4464055
 
1e55fa2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd1ddd
 
 
 
 
 
1e55fa2
 
4464055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adb1e77
dbd1ddd
1e55fa2
 
92a4906
4464055
 
 
 
1e55fa2
 
4464055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92a4906
 
4464055
 
1e55fa2
 
92a4906
 
1e55fa2
 
 
 
 
 
 
4464055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e55fa2
 
 
 
 
 
 
4464055
 
 
 
 
 
 
 
 
dbd1ddd
 
4464055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e55fa2
 
4464055
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/claude?hl=zh-cn
https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/claude/use-claude?hl=zh-cn


Llama

https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/llama/use-llama?hl=zh-cn
https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/llama/use-llama?hl=zh-cn#regions-quotas

Model Name
llama-4-maverick-17b-128e-instruct-maas
llama-4-scout-17b-16e-instruct-maas

区域选择 us-east5



Model Name

gemini-2.5-pro
The model does not support setting thinking_budget to 0.
Unable to submit request because thinking_budget is out of range; supported values are integers from 128 to 32768.


"""
import argparse
from datetime import datetime
import json
import os
from pathlib import Path
import sys
import time
import tempfile
from zoneinfo import ZoneInfo  # Python 3.9+ 自带,无需安装

pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../"))

from google import genai
from google.genai import types

from project_settings import environment, project_path


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model_name",
        # default="gemini-2.5-pro",   # The model does not support setting thinking_budget to 0.
        default="gemini-2.5-flash",
        # default="gemini-2.5-flash-lite-preview-06-17",
        # default="llama-4-maverick-17b-128e-instruct-maas",
        # default="llama-4-scout-17b-16e-instruct-maas",
        type=str
    )
    parser.add_argument(
        "--eval_dataset_name",
        # default="agent-bingoplus-ph-90-choice.jsonl",
        default="agent-lingoace-zh-400-choice.jsonl",
        # default="arc-easy-1000-choice.jsonl",
        type=str
    )
    parser.add_argument(
        "--eval_dataset_dir",
        default=(project_path / "data/dataset").as_posix(),
        type=str
    )
    parser.add_argument(
        "--eval_data_dir",
        default=(project_path / "data/eval_data").as_posix(),
        type=str
    )
    parser.add_argument(
        "--client",
        default="shenzhen_sase",
        type=str
    )
    parser.add_argument(
        "--service",
        # default="google_potent_veld_462405_t3",
        default="google_nxcloud_312303",
        type=str
    )
    parser.add_argument(
        "--create_time_str",
        default="null",
        # default="20250731_162116",
        type=str
    )
    parser.add_argument(
        "--interval",
        default=1,
        type=int
    )
    args = parser.parse_args()
    return args


def main():
    args = get_args()

    service = environment.get(args.service, dtype=json.loads)
    project_id = service["project_id"]

    google_application_credentials = Path(tempfile.gettempdir()) / f"llm_eval_system/{project_id}.json"
    google_application_credentials.parent.mkdir(parents=True, exist_ok=True)

    with open(google_application_credentials.as_posix(), "w", encoding="utf-8") as f:
        content = json.dumps(service, ensure_ascii=False, indent=4)
        f.write(f"{content}\n")

    os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = google_application_credentials.as_posix()

    eval_dataset_dir = Path(args.eval_dataset_dir)
    eval_dataset_dir.mkdir(parents=True, exist_ok=True)
    eval_data_dir = Path(args.eval_data_dir)
    eval_data_dir.mkdir(parents=True, exist_ok=True)

    if args.create_time_str == "null":
        tz = ZoneInfo("Asia/Shanghai")
        now = datetime.now(tz)
        create_time_str = now.strftime("%Y%m%d_%H%M%S")
        # create_time_str = "20250729-interval-5"
    else:
        create_time_str = args.create_time_str

    eval_dataset = eval_dataset_dir / args.eval_dataset_name

    output_file = eval_data_dir / f"gemini_google/google/{args.model_name}/{args.client}/{args.service}/{create_time_str}/{args.eval_dataset_name}"
    output_file.parent.mkdir(parents=True, exist_ok=True)

    client = genai.Client(
        vertexai=True,
        project=project_id,
        location="global",
        # location="us-east5",
    )
    generate_content_config = types.GenerateContentConfig(
        top_p=0.95,
        temperature=0.6,
        max_output_tokens=1,
        response_modalities=["TEXT"],
        thinking_config=types.ThinkingConfig(
            thinking_budget=0
        )
    )

    total = 0
    total_correct = 0

    # finished
    finished_idx_set = set()
    if os.path.exists(output_file.as_posix()):
        with open(output_file.as_posix(), "r", encoding="utf-8") as f:
            for row in f:
                row = json.loads(row)
                idx = row["idx"]
                total = row["total"]
                total_correct = row["total_correct"]
                finished_idx_set.add(idx)
    print(f"finished count: {len(finished_idx_set)}")

    with open(eval_dataset.as_posix(), "r", encoding="utf-8") as fin, open(output_file.as_posix(), "a+", encoding="utf-8") as fout:
        for row in fin:
            row = json.loads(row)
            idx = row["idx"]
            prompt = row["prompt"]
            response = row["response"]

            if idx in finished_idx_set:
                continue
            finished_idx_set.add(idx)

            contents = [
                types.Content(
                    role="user",
                    parts=[
                        types.Part.from_text(text=prompt)
                    ]
                )
            ]
            time.sleep(args.interval)
            print(f"sleep: {args.interval}")
            time_begin = time.time()
            llm_response: types.GenerateContentResponse = client.models.generate_content(
                model=args.model_name,
                contents=contents,
                config=generate_content_config,
            )
            time_cost = time.time() - time_begin
            print(f"time_cost: {time_cost}")
            try:
                prediction = llm_response.candidates[0].content.parts[0].text
            except TypeError as e:
                print(f"request failed, error type: {type(e)}, error text: {str(e)}")
                continue
            correct = 1 if prediction == response else 0

            total += 1
            total_correct += correct
            score = total_correct / total

            row_ = {
                "idx": idx,
                "prompt": prompt,
                "response": response,
                "prediction": prediction,
                "correct": correct,
                "total": total,
                "total_correct": total_correct,
                "score": score,
                "time_cost": time_cost,
            }
            row_ = json.dumps(row_, ensure_ascii=False)
            fout.write(f"{row_}\n")

    return


if __name__ == "__main__":
    main()