File size: 5,376 Bytes
ed6ea08
 
 
 
 
febd133
341b916
 
 
 
 
ed6ea08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c525f79
341b916
 
 
 
c525f79
 
 
 
 
ed6ea08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
febd133
 
ed6ea08
febd133
 
 
341b916
 
ed6ea08
c525f79
 
ed6ea08
341b916
c525f79
 
 
 
 
 
341b916
c525f79
341b916
 
ed6ea08
 
c525f79
9f1d0ce
 
 
ed6ea08
 
 
 
 
 
 
 
febd133
d2b43fb
ed6ea08
 
 
 
9deaf72
c525f79
 
ed6ea08
 
 
d214241
ed6ea08
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
from collections import defaultdict
import os
import platform
import re

from project_settings import project_path

os.environ["HUGGINGFACE_HUB_CACHE"] = (project_path / "cache/huggingface/hub").as_posix()

import gradio as gr
from threading import Thread
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.generation.streamers import TextIteratorStreamer
import torch


def get_args():
    parser = argparse.ArgumentParser()

    parser.add_argument("--max_new_tokens", default=512, type=int)
    parser.add_argument("--top_p", default=0.9, type=float)
    parser.add_argument("--temperature", default=0.35, type=float)
    parser.add_argument("--repetition_penalty", default=1.0, type=float)
    parser.add_argument('--device', default="cuda" if torch.cuda.is_available() else "cpu", type=str)

    args = parser.parse_args()
    return args


description = """
## GPT2 Chat
"""


examples = [

]


def repl1(match):
    result = "{}{}".format(match.group(1), match.group(2))
    return result


def repl2(match):
    result = "{}".format(match.group(1))
    return result


def main():
    args = get_args()

    if args.device == 'auto':
        device = 'cuda' if torch.cuda.is_available() else 'cpu'
    else:
        device = args.device

    input_text_box = gr.Text(label="text")
    output_text_box = gr.Text(lines=4, label="generated_content")

    def fn_stream(text: str,
                  max_new_tokens: int = 200,
                  top_p: float = 0.85,
                  temperature: float = 0.35,
                  repetition_penalty: float = 1.2,
                  model_name: str = "qgyd2021/lib_service_4chan",
                  is_chat: bool = True,
                  ):
        tokenizer = BertTokenizer.from_pretrained(model_name)
        model = GPT2LMHeadModel.from_pretrained(model_name)
        model = model.eval()

        text_encoded = tokenizer.__call__(text, add_special_tokens=False)
        input_ids_ = text_encoded["input_ids"]

        input_ids = [tokenizer.cls_token_id]
        input_ids.extend(input_ids_)
        if is_chat:
            input_ids.append(tokenizer.sep_token_id)

        input_ids = torch.tensor([input_ids], dtype=torch.long)
        input_ids = input_ids.to(device)

        streamer = TextIteratorStreamer(tokenizer=tokenizer)

        generation_kwargs = dict(
            inputs=input_ids,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            top_p=top_p,
            temperature=temperature,
            repetition_penalty=repetition_penalty,
            eos_token_id=tokenizer.sep_token_id if is_chat else None,
            pad_token_id=tokenizer.pad_token_id,
            streamer=streamer,
        )
        thread = Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()

        output: str = ""
        first_answer = True
        for output_ in streamer:
            if first_answer:
                first_answer = False
                continue

            output_ = output_.replace("[UNK] ", "")
            output_ = output_.replace("[UNK]", "")
            output_ = output_.replace("[CLS] ", "")
            output_ = output_.replace("[CLS]", "")

            output += output_
            if output.startswith("[SEP]"):
                output = output[5:]

            output = output.lstrip(" ,.!?")
            output = re.sub(r"([,。!?\u4e00-\u9fa5]) ([,。!?\u4e00-\u9fa5])", repl1, output)
            output = re.sub(r"([,。!?\u4e00-\u9fa5]) ", repl2, output)

            output = output.replace("[SEP] ", "\n")
            output = output.replace("[SEP]", "\n")

            yield output

    model_name_choices = ["trained_models/lib_service_4chan", "trained_models/chinese_porn_novel"] \
        if platform.system() == "Windows" else \
        ["qgyd2021/lib_service_4chan", "qgyd2021/chinese_chitchat", "qgyd2021/chinese_porn_novel"]

    demo = gr.Interface(
        fn=fn_stream,
        inputs=[
            input_text_box,
            gr.Slider(minimum=0, maximum=512, value=512, step=1, label="max_new_tokens"),
            gr.Slider(minimum=0, maximum=1, value=0.85, step=0.01, label="top_p"),
            gr.Slider(minimum=0, maximum=1, value=0.35, step=0.01, label="temperature"),
            gr.Slider(minimum=0, maximum=2, value=1.2, step=0.01, label="repetition_penalty"),
            gr.Dropdown(choices=model_name_choices, value=model_name_choices[0], label="model_name"),
            gr.Checkbox(value=True, label="is_chat")
        ],
        outputs=[output_text_box],
        examples=[
            ["怎样擦屁股才能擦的干净", 512, 0.75, 0.35, 1.2, "qgyd2021/lib_service_4chan", True],
            ["你好", 512, 0.75, 0.35, 1.2, "qgyd2021/chinese_chitchat", True],
            ["白洁走到床边并脱去内衣, 一双硕大的", 512, 0.75, 0.35, 1.8, "qgyd2021/chinese_porn_novel", False],
            ["男人走进房间, 上床, 压上", 512, 0.75, 0.35, 1.8, "qgyd2021/chinese_porn_novel", False],
        ],
        cache_examples=False,
        examples_per_page=50,
        title="GPT2 Chat",
        description=description,
    )
    demo.queue().launch()

    return


if __name__ == '__main__':
    main()