File size: 22,090 Bytes
e73da9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
import torch
from tqdm import tqdm
# from torchvision import transforms as T
from typing import List, Optional, Dict, Union
from models import PipelineWrapper


def mu_tilde(model, xt, x0, timestep):
    "mu_tilde(x_t, x_0) DDPM paper eq. 7"
    prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
    alpha_prod_t_prev = model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 \
        else model.scheduler.final_alpha_cumprod
    alpha_t = model.scheduler.alphas[timestep]
    beta_t = 1 - alpha_t
    alpha_bar = model.scheduler.alphas_cumprod[timestep]
    return ((alpha_prod_t_prev ** 0.5 * beta_t) / (1-alpha_bar)) * x0 + \
        ((alpha_t**0.5 * (1-alpha_prod_t_prev)) / (1 - alpha_bar)) * xt


def sample_xts_from_x0(model, x0, num_inference_steps=50, x_prev_mode=False):
    """
    Samples from P(x_1:T|x_0)
    """
    # torch.manual_seed(43256465436)
    alpha_bar = model.model.scheduler.alphas_cumprod
    sqrt_one_minus_alpha_bar = (1-alpha_bar) ** 0.5
    alphas = model.model.scheduler.alphas
    # betas = 1 - alphas
    variance_noise_shape = (
            num_inference_steps + 1,
            model.model.unet.config.in_channels,
            # model.unet.sample_size,
            # model.unet.sample_size)
            x0.shape[-2],
            x0.shape[-1])

    timesteps = model.model.scheduler.timesteps.to(model.device)
    t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
    xts = torch.zeros(variance_noise_shape).to(x0.device)
    xts[0] = x0
    x_prev = x0
    for t in reversed(timesteps):
        # idx = t_to_idx[int(t)]
        idx = num_inference_steps-t_to_idx[int(t)]
        if x_prev_mode:
            xts[idx] = x_prev * (alphas[t] ** 0.5) + torch.randn_like(x0) * ((1-alphas[t]) ** 0.5)
            x_prev = xts[idx].clone()
        else:
            xts[idx] = x0 * (alpha_bar[t] ** 0.5) + torch.randn_like(x0) * sqrt_one_minus_alpha_bar[t]
    # xts = torch.cat([xts, x0 ],dim = 0)

    return xts


def forward_step(model, model_output, timestep, sample):
    next_timestep = min(model.scheduler.config.num_train_timesteps - 2,
                        timestep + model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps)

    # 2. compute alphas, betas
    alpha_prod_t = model.scheduler.alphas_cumprod[timestep]
    # alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep] if next_ltimestep >= 0 \
    #     else self.scheduler.final_alpha_cumprod

    beta_prod_t = 1 - alpha_prod_t

    # 3. compute predicted original sample from predicted noise also called
    # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)

    # 5. TODO: simple noising implementatiom
    next_sample = model.scheduler.add_noise(pred_original_sample, model_output, torch.LongTensor([next_timestep]))
    return next_sample


def inversion_forward_process(model: PipelineWrapper,
                              x0: torch.Tensor,
                              etas: Optional[float] = None,
                              prog_bar: bool = False,
                              prompts: List[str] = [""],
                              cfg_scales: List[float] = [3.5],
                              num_inference_steps: int = 50,
                              eps: Optional[float] = None,
                              cutoff_points: Optional[List[float]] = None,
                              numerical_fix: bool = False,
                              extract_h_space: bool = False,
                              extract_skipconns: bool = False,
                              x_prev_mode: bool = False):
    if len(prompts) > 1 and extract_h_space:
        raise NotImplementedError("How do you split cfg_scales for hspace? TODO")

    if len(prompts) > 1 or prompts[0] != "":
        text_embeddings_hidden_states, text_embeddings_class_labels, \
            text_embeddings_boolean_prompt_mask = model.encode_text(prompts)
        # text_embeddings = encode_text(model, prompt)

        # # classifier free guidance
        batch_size = len(prompts)
        cfg_scales_tensor = torch.ones((batch_size, *x0.shape[1:]), device=model.device, dtype=x0.dtype)

        # if len(prompts) > 1:
        #     if cutoff_points is None:
        #         cutoff_points = [i * 1 / batch_size for i in range(1, batch_size)]
        #     if len(cfg_scales) == 1:
        #         cfg_scales *= batch_size
        #     elif len(cfg_scales) < batch_size:
        #         raise ValueError("Not enough target CFG scales")

        #     cutoff_points = [int(x * cfg_scales_tensor.shape[2]) for x in cutoff_points]
        #     cutoff_points = [0, *cutoff_points, cfg_scales_tensor.shape[2]]

        #     for i, (start, end) in enumerate(zip(cutoff_points[:-1], cutoff_points[1:])):
        #         cfg_scales_tensor[i, :, end:] = 0
        #         cfg_scales_tensor[i, :, :start] = 0
        #         cfg_scales_tensor[i] *= cfg_scales[i]
        #         if prompts[i] == "":
        #             cfg_scales_tensor[i] = 0
        #     cfg_scales_tensor = T.functional.gaussian_blur(cfg_scales_tensor, kernel_size=15, sigma=1)
        # else:
        cfg_scales_tensor *= cfg_scales[0]

    uncond_embedding_hidden_states, uncond_embedding_class_lables, uncond_boolean_prompt_mask = model.encode_text([""])
    # uncond_embedding = encode_text(model, "")
    timesteps = model.model.scheduler.timesteps.to(model.device)
    variance_noise_shape = (
        num_inference_steps,
        model.model.unet.config.in_channels,
        # model.unet.sample_size,
        # model.unet.sample_size)
        x0.shape[-2],
        x0.shape[-1])

    if etas is None or (type(etas) in [int, float] and etas == 0):
        eta_is_zero = True
        zs = None
    else:
        eta_is_zero = False
        if type(etas) in [int, float]:
            etas = [etas]*model.model.scheduler.num_inference_steps
        xts = sample_xts_from_x0(model, x0, num_inference_steps=num_inference_steps, x_prev_mode=x_prev_mode)
        alpha_bar = model.model.scheduler.alphas_cumprod
        zs = torch.zeros(size=variance_noise_shape, device=model.device)
    hspaces = []
    skipconns = []
    t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
    xt = x0
    # op = tqdm(reversed(timesteps)) if prog_bar else reversed(timesteps)
    op = tqdm(timesteps) if prog_bar else timesteps

    for t in op:
        # idx = t_to_idx[int(t)]
        idx = num_inference_steps - t_to_idx[int(t)] - 1
        # 1. predict noise residual
        if not eta_is_zero:
            xt = xts[idx+1][None]

        with torch.no_grad():
            out, out_hspace, out_skipconns = model.unet_forward(xt, timestep=t,
                                                                encoder_hidden_states=uncond_embedding_hidden_states,
                                                                class_labels=uncond_embedding_class_lables,
                                                                encoder_attention_mask=uncond_boolean_prompt_mask)
            # out = model.unet.forward(xt, timestep= t, encoder_hidden_states=uncond_embedding)
            if len(prompts) > 1 or prompts[0] != "":
                cond_out, cond_out_hspace, cond_out_skipconns = model.unet_forward(
                    xt.expand(len(prompts), -1, -1, -1), timestep=t,
                    encoder_hidden_states=text_embeddings_hidden_states,
                    class_labels=text_embeddings_class_labels,
                    encoder_attention_mask=text_embeddings_boolean_prompt_mask)
                # cond_out = model.unet.forward(xt, timestep=t, encoder_hidden_states = text_embeddings)

        if len(prompts) > 1 or prompts[0] != "":
            # # classifier free guidance
            noise_pred = out.sample + \
                (cfg_scales_tensor * (cond_out.sample - out.sample.expand(batch_size, -1, -1, -1))
                 ).sum(axis=0).unsqueeze(0)
            if extract_h_space or extract_skipconns:
                noise_h_space = out_hspace + cfg_scales[0] * (cond_out_hspace - out_hspace)
            if extract_skipconns:
                noise_skipconns = {k: [out_skipconns[k][j] + cfg_scales[0] *
                                       (cond_out_skipconns[k][j] - out_skipconns[k][j])
                                       for j in range(len(out_skipconns[k]))]
                                   for k in out_skipconns}
        else:
            noise_pred = out.sample
            if extract_h_space or extract_skipconns:
                noise_h_space = out_hspace
            if extract_skipconns:
                noise_skipconns = out_skipconns
        if extract_h_space or extract_skipconns:
            hspaces.append(noise_h_space)
        if extract_skipconns:
            skipconns.append(noise_skipconns)

        if eta_is_zero:
            # 2. compute more noisy image and set x_t -> x_t+1
            xt = forward_step(model.model, noise_pred, t, xt)
        else:
            # xtm1 =  xts[idx+1][None]
            xtm1 = xts[idx][None]
            # pred of x0
            if model.model.scheduler.config.prediction_type == 'epsilon':
                pred_original_sample = (xt - (1 - alpha_bar[t]) ** 0.5 * noise_pred) / alpha_bar[t] ** 0.5
            elif model.model.scheduler.config.prediction_type == 'v_prediction':
                pred_original_sample = (alpha_bar[t] ** 0.5) * xt - ((1 - alpha_bar[t]) ** 0.5) * noise_pred

            # direction to xt
            prev_timestep = t - model.model.scheduler.config.num_train_timesteps // \
                model.model.scheduler.num_inference_steps

            alpha_prod_t_prev = model.get_alpha_prod_t_prev(prev_timestep)
            variance = model.get_variance(t, prev_timestep)

            if model.model.scheduler.config.prediction_type == 'epsilon':
                radom_noise_pred = noise_pred
            elif model.model.scheduler.config.prediction_type == 'v_prediction':
                radom_noise_pred = (alpha_bar[t] ** 0.5) * noise_pred + ((1 - alpha_bar[t]) ** 0.5) * xt

            pred_sample_direction = (1 - alpha_prod_t_prev - etas[idx] * variance) ** (0.5) * radom_noise_pred

            mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

            z = (xtm1 - mu_xt) / (etas[idx] * variance ** 0.5)

            zs[idx] = z

            # correction to avoid error accumulation
            if numerical_fix:
                xtm1 = mu_xt + (etas[idx] * variance ** 0.5)*z
            xts[idx] = xtm1

    if zs is not None:
        # zs[-1] = torch.zeros_like(zs[-1])
        zs[0] = torch.zeros_like(zs[0])
        # zs_cycle[0] = torch.zeros_like(zs[0])

    if extract_h_space:
        hspaces = torch.concat(hspaces, axis=0)
        return xt, zs, xts, hspaces

    if extract_skipconns:
        hspaces = torch.concat(hspaces, axis=0)
        return xt, zs, xts, hspaces, skipconns

    return xt, zs, xts


def reverse_step(model, model_output, timestep, sample, eta=0, variance_noise=None):
    # 1. get previous step value (=t-1)
    prev_timestep = timestep - model.model.scheduler.config.num_train_timesteps // \
        model.model.scheduler.num_inference_steps
    # 2. compute alphas, betas
    alpha_prod_t = model.model.scheduler.alphas_cumprod[timestep]
    alpha_prod_t_prev = model.get_alpha_prod_t_prev(prev_timestep)
    beta_prod_t = 1 - alpha_prod_t
    # 3. compute predicted original sample from predicted noise also called
    # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    if model.model.scheduler.config.prediction_type == 'epsilon':
        pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
    elif model.model.scheduler.config.prediction_type == 'v_prediction':
        pred_original_sample = (alpha_prod_t ** 0.5) * sample - (beta_prod_t ** 0.5) * model_output

    # 5. compute variance: "sigma_t(η)" -> see formula (16)
    # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
    # variance = self.scheduler._get_variance(timestep, prev_timestep)
    variance = model.get_variance(timestep, prev_timestep)
    # std_dev_t = eta * variance ** (0.5)
    # Take care of asymetric reverse process (asyrp)
    if model.model.scheduler.config.prediction_type == 'epsilon':
        model_output_direction = model_output
    elif model.model.scheduler.config.prediction_type == 'v_prediction':
        model_output_direction = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
    # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    # pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output_direction
    pred_sample_direction = (1 - alpha_prod_t_prev - eta * variance) ** (0.5) * model_output_direction
    # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
    # 8. Add noice if eta > 0
    if eta > 0:
        if variance_noise is None:
            variance_noise = torch.randn(model_output.shape, device=model.device)
        sigma_z = eta * variance ** (0.5) * variance_noise
        prev_sample = prev_sample + sigma_z

    return prev_sample


def inversion_reverse_process(model: PipelineWrapper,
                              xT: torch.Tensor,
                              skips: torch.Tensor,
                              fix_alpha: float = 0.1,
                              etas: float = 0,
                              prompts: List[str] = [""],
                              neg_prompts: List[str] = [""],
                              cfg_scales: Optional[List[float]] = None,
                              prog_bar: bool = False,
                              zs: Optional[List[torch.Tensor]] = None,
                            #   controller=None,
                              cutoff_points: Optional[List[float]] = None,
                              hspace_add: Optional[torch.Tensor] = None,
                              hspace_replace: Optional[torch.Tensor] = None,
                              skipconns_replace: Optional[Dict[int, torch.Tensor]] = None,
                              zero_out_resconns: Optional[Union[int, List]] = None,
                              asyrp: bool = False,
                              extract_h_space: bool = False,
                              extract_skipconns: bool = False):

    batch_size = len(prompts)

    text_embeddings_hidden_states, text_embeddings_class_labels, \
        text_embeddings_boolean_prompt_mask = model.encode_text(prompts)
    uncond_embedding_hidden_states, uncond_embedding_class_lables, \
        uncond_boolean_prompt_mask = model.encode_text(neg_prompts)
    # text_embeddings = encode_text(model, prompts)
    # uncond_embedding = encode_text(model, [""] * batch_size)

    masks = torch.ones((batch_size, *xT.shape[1:]), device=model.device, dtype=xT.dtype)
    cfg_scales_tensor = torch.ones((batch_size, *xT.shape[1:]), device=model.device, dtype=xT.dtype)

    # if batch_size > 1:
    #     if cutoff_points is None:
    #         cutoff_points = [i * 1 / batch_size for i in range(1, batch_size)]
    #     if len(cfg_scales) == 1:
    #         cfg_scales *= batch_size
    #     elif len(cfg_scales) < batch_size:
    #         raise ValueError("Not enough target CFG scales")

    #     cutoff_points = [int(x * cfg_scales_tensor.shape[2]) for x in cutoff_points]
    #     cutoff_points = [0, *cutoff_points, cfg_scales_tensor.shape[2]]

    #     for i, (start, end) in enumerate(zip(cutoff_points[:-1], cutoff_points[1:])):
    #         cfg_scales_tensor[i, :, end:] = 0
    #         cfg_scales_tensor[i, :, :start] = 0
    #         masks[i, :, end:] = 0
    #         masks[i, :, :start] = 0
    #         cfg_scales_tensor[i] *= cfg_scales[i]
    #     cfg_scales_tensor = T.functional.gaussian_blur(cfg_scales_tensor, kernel_size=15, sigma=1)
    #     masks = T.functional.gaussian_blur(masks, kernel_size=15, sigma=1)
    # else:
    cfg_scales_tensor *= cfg_scales[0]

    if etas is None:
        etas = 0
    if type(etas) in [int, float]:
        etas = [etas]*model.model.scheduler.num_inference_steps
    assert len(etas) == model.model.scheduler.num_inference_steps
    timesteps = model.model.scheduler.timesteps.to(model.device)

    # xt = xT.expand(1, -1, -1, -1)
    xt = xT[skips.max()].unsqueeze(0)
    op = tqdm(timesteps[-zs.shape[0]:]) if prog_bar else timesteps[-zs.shape[0]:]

    t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs.shape[0]:])}
    hspaces = []
    skipconns = []

    for it, t in enumerate(op):
        # idx = t_to_idx[int(t)]
        idx = model.model.scheduler.num_inference_steps - t_to_idx[int(t)] - \
            (model.model.scheduler.num_inference_steps - zs.shape[0] + 1)
        # # Unconditional embedding
        with torch.no_grad():
            uncond_out, out_hspace, out_skipconns = model.unet_forward(
                xt, timestep=t,
                encoder_hidden_states=uncond_embedding_hidden_states,
                class_labels=uncond_embedding_class_lables,
                encoder_attention_mask=uncond_boolean_prompt_mask,
                mid_block_additional_residual=(None if hspace_add is None else
                                               (1 / (cfg_scales[0] + 1)) *
                                               (hspace_add[-zs.shape[0]:][it] if hspace_add.shape[0] > 1
                                                else hspace_add)),
                replace_h_space=(None if hspace_replace is None else
                                 (hspace_replace[-zs.shape[0]:][it].unsqueeze(0) if hspace_replace.shape[0] > 1
                                  else hspace_replace)),
                zero_out_resconns=zero_out_resconns,
                replace_skip_conns=(None if skipconns_replace is None else
                                    (skipconns_replace[-zs.shape[0]:][it] if len(skipconns_replace) > 1
                                     else skipconns_replace))
                )  # encoder_hidden_states = uncond_embedding)

        # # Conditional embedding
        if prompts:
            with torch.no_grad():
                cond_out, cond_out_hspace, cond_out_skipconns = model.unet_forward(
                    xt.expand(batch_size, -1, -1, -1),
                    timestep=t,
                    encoder_hidden_states=text_embeddings_hidden_states,
                    class_labels=text_embeddings_class_labels,
                    encoder_attention_mask=text_embeddings_boolean_prompt_mask,
                    mid_block_additional_residual=(None if hspace_add is None else
                                                   (cfg_scales[0] / (cfg_scales[0] + 1)) *
                                                   (hspace_add[-zs.shape[0]:][it] if hspace_add.shape[0] > 1
                                                    else hspace_add)),
                    replace_h_space=(None if hspace_replace is None else
                                     (hspace_replace[-zs.shape[0]:][it].unsqueeze(0) if hspace_replace.shape[0] > 1
                                      else hspace_replace)),
                    zero_out_resconns=zero_out_resconns,
                    replace_skip_conns=(None if skipconns_replace is None else
                                        (skipconns_replace[-zs.shape[0]:][it] if len(skipconns_replace) > 1
                                         else skipconns_replace))
                    )  # encoder_hidden_states = text_embeddings)

        z = zs[idx] if zs is not None else None
        # print(f'idx: {idx}')
        # print(f't: {t}')
        z = z.unsqueeze(0)
        # z = z.expand(batch_size, -1, -1, -1)
        if prompts:
            # # classifier free guidance
            # noise_pred = uncond_out.sample + cfg_scales_tensor * (cond_out.sample - uncond_out.sample)
            noise_pred = uncond_out.sample + \
                (cfg_scales_tensor * (cond_out.sample - uncond_out.sample.expand(batch_size, -1, -1, -1))
                 ).sum(axis=0).unsqueeze(0)
            if extract_h_space or extract_skipconns:
                noise_h_space = out_hspace + cfg_scales[0] * (cond_out_hspace - out_hspace)
            if extract_skipconns:
                noise_skipconns = {k: [out_skipconns[k][j] + cfg_scales[0] *
                                       (cond_out_skipconns[k][j] - out_skipconns[k][j])
                                       for j in range(len(out_skipconns[k]))]
                                   for k in out_skipconns}
        else:
            noise_pred = uncond_out.sample
            if extract_h_space or extract_skipconns:
                noise_h_space = out_hspace
            if extract_skipconns:
                noise_skipconns = out_skipconns

        if extract_h_space or extract_skipconns:
            hspaces.append(noise_h_space)
        if extract_skipconns:
            skipconns.append(noise_skipconns)

        # 2. compute less noisy image and set x_t -> x_t-1
        xt = reverse_step(model, noise_pred, t, xt, eta=etas[idx], variance_noise=z)
        # if controller is not None:
            # xt = controller.step_callback(xt)

        # "fix" xt
        apply_fix = ((skips.max() - skips) > it)
        if apply_fix.any():
            apply_fix = (apply_fix * fix_alpha).unsqueeze(1).unsqueeze(2).unsqueeze(3).to(xT.device)
            xt = (masks * (xt.expand(batch_size, -1, -1, -1) * (1 - apply_fix) +
                           apply_fix * xT[skips.max() - it - 1].expand(batch_size, -1, -1, -1))
                  ).sum(axis=0).unsqueeze(0)

    if extract_h_space:
        return xt, zs, torch.concat(hspaces, axis=0)

    if extract_skipconns:
        return xt, zs, torch.concat(hspaces, axis=0), skipconns

    return xt, zs