File size: 10,708 Bytes
193db9d 3b39b49 02b7dec 3b39b49 193db9d 3b39b49 193db9d 3b39b49 193db9d 3b39b49 193db9d 3b39b49 193db9d 3b39b49 193db9d 3b39b49 193db9d 3b39b49 193db9d 3b39b49 193db9d 3b39b49 193db9d 3b39b49 193db9d 3b39b49 193db9d 3b39b49 193db9d 3b39b49 193db9d 3b39b49 193db9d 3b39b49 193db9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import json
import logging
import re
from collections import Counter
import matplotlib.pyplot as plt
import pandas as pd
def _make_answer_html(answer: str, clean_answers: list[str] = []) -> str:
clean_answers = [a for a in clean_answers if len(a.split()) <= 6 and a != answer]
additional_answers_html = ""
if clean_answers:
additional_answers_html = f"<span class='bonus-answer-text'> [or {', '.join(clean_answers)}]</span>"
return f"""
<div class='bonus-answer'>
<span class='bonus-answer-label'>Answer: </span>
<span class='bonus-answer-text'>{answer}</span>
{additional_answers_html}
</div>
"""
def _get_token_classes(confidence, buzz, score) -> str:
if confidence is None:
return "token"
elif not buzz:
return "token guess-point no-buzz"
else:
return f"token guess-point buzz-{score}"
def _create_token_tooltip_html(values) -> str:
if not values:
return ""
confidence = values.get("confidence", 0)
buzz = values.get("buzz", 0)
score = values.get("score", 0)
answer = values.get("answer", "")
answer_tokens = answer.split()
if len(answer_tokens) > 10:
k = len(answer_tokens) - 10
answer = " ".join(answer_tokens[:10]) + f"...[{k} more words]"
color = "#a3c9a3" if score else "#ebbec4" # Light green for correct, light pink for incorrect
return f"""
<div class="tooltip card" style="background-color: {color}; border-radius: 8px; padding: 12px; box-shadow: 2px 4px 8px rgba(0, 0, 0, 0.15);">
<div class="tooltip-content" style="font-family: 'Arial', sans-serif; color: #000;">
<h4 style="margin: 0 0 8px; color: #000;">π‘ Answer</h4>
<p style="font-weight: bold; margin: 0 0 8px; color: #000;">{answer}</p>
<p style="margin: 0 0 4px; color: #000;">π <b style="color: #000;">Confidence:</b> {confidence:.2f}</p>
<p style="margin: 0; color: #000;">π <b style="color: #000;">Status:</b> {"β
Correct" if score else "β Incorrect" if buzz else "π« No Buzz"}</p>
</div>
</div>
"""
def create_token_html(token: str, values: dict, i: int) -> str:
confidence = values.get("confidence", None)
buzz = values.get("buzz", 0)
score = values.get("score", 0)
# Replace non-word characters for proper display in HTML
display_token = f"{token} π¨" if buzz else f"{token} π" if values else token
if not re.match(r"\w+", token):
display_token = token.replace(" ", " ")
css_class = _get_token_classes(confidence, buzz, score)
# Add tooltip if we have values for this token
tooltip_html = _create_token_tooltip_html(values)
token_html = f'<span id="token-{i}" class="{css_class}" data-index="{i}">{display_token}{tooltip_html}</span>'
# if i in marker_indices:
# token_html += "<span style='color: crimson;'>|</span>"
return token_html
def create_tossup_html(
tokens: list[str],
answer_primary: str,
clean_answers: list[str],
marker_indices: list[int] = [],
eval_points: list[tuple[int, dict]] = [],
) -> str:
"""Create HTML for tokens with hover capability and a colored header for the answer."""
try:
ep = dict(eval_points)
marker_indices = set(marker_indices)
html_tokens = []
for i, token in enumerate(tokens):
token_html = create_token_html(token, ep.get(i, {}), i + 1)
html_tokens.append(token_html)
answer_html = _make_answer_html(answer_primary, clean_answers)
return f"""
<div class='bonus-container'>
<div class='bonus-card'>
<div class='tossup-question'>
{"".join(html_tokens)}
</div>
{answer_html}
</div>
</div>
"""
except Exception as e:
logging.error(f"Error creating token HTML: {e}", exc_info=True)
return f"<div class='token-container'>Error creating tokens: {str(e)}</div>"
def create_bonus_html(leadin: str, parts: list[dict]) -> str:
# Create HTML for leadin and parts with answers
leadin_html = f"<div class='bonus-leadin'>{leadin}</div>"
parts_html = []
for i, part in enumerate(parts):
question_text = part["part"]
answer_html = _make_answer_html(part["answer_primary"], part["clean_answers"])
"<div class='bonus-part-number'>Part {i + 1}</div>"
part_html = f"""
<div class='bonus-part'>
<div class='bonus-part-text'><b>#{i + 1}.</b> {question_text}</div>
{answer_html}
</div>
"""
parts_html.append(part_html)
html_content = f"""
<div class='bonus-container'>
<div class='bonus-card'>
{leadin_html}
{"".join(parts_html)}
</div>
</div>
"""
# Format clean answers for the answer display
clean_answers = []
for i, part in enumerate(parts):
part_answers = [a for a in part["clean_answers"] if len(a.split()) <= 6]
clean_answers.append(f"{i + 1}. {', '.join(part_answers)}")
return html_content
def create_line_plot(eval_points: list[tuple[int, dict]], highlighted_index: int = -1) -> pd.DataFrame:
"""Create a Gradio LinePlot of token values with optional highlighting using DataFrame."""
try:
# Create base confidence data
data = []
# Add buzz points to the plot
for i, (v, b) in eval_points:
color = "#ff4444" if b == 0 else "#228b22"
data.append(
{
"position": i,
"value": v,
"type": "buzz",
"highlight": True,
"color": color,
}
)
if highlighted_index >= 0:
# Add vertical line for the highlighted token
data.extend(
[
{
"position": highlighted_index,
"value": 0,
"type": "hover-line",
"color": "#000000",
"highlight": True,
},
{
"position": highlighted_index,
"value": 1,
"type": "hover-line",
"color": "#000000",
"highlight": True,
},
]
)
return pd.DataFrame(data)
except Exception as e:
logging.error(f"Error creating line plot: {e}", exc_info=True)
# Return an empty DataFrame with the expected columns
return pd.DataFrame(columns=["position", "value", "type", "highlight", "color"])
def create_tossup_confidence_pyplot(
tokens: list[str], eval_points: list[tuple[int, dict]], highlighted_index: int = -1
) -> plt.Figure:
"""Create a pyplot of token values with optional highlighting."""
plt.style.use("ggplot") # Set theme to grid paper
fig = plt.figure(figsize=(11, 5)) # Set figure size to 11x5
ax = fig.add_subplot(111)
x = [0]
y = [0]
for i, v in eval_points:
x.append(i + 1)
y.append(v["confidence"])
ax.plot(x, y, "o--", color="#4698cf")
for i, v in eval_points:
if not v["buzz"]:
continue
confidence = v["confidence"]
color = "green" if v["score"] else "red"
ax.plot(i + 1, confidence, "o", color=color)
if i >= len(tokens):
print(f"Token index {i} is out of bounds for n_tokens: {len(tokens)}")
ax.annotate(f"{tokens[i]}", (i + 1, confidence), textcoords="offset points", xytext=(0, 10), ha="center")
if highlighted_index >= 0:
# Add light vertical line for the highlighted token from 0 to 1
ax.axvline(x=highlighted_index + 1, color="#ff9900", linestyle="--", ymin=0, ymax=1)
ax.set_title("Buzz Confidence")
ax.set_xlabel("Token Index")
ax.set_ylabel("Confidence")
ax.set_xticks(x)
ax.set_xticklabels(x)
return fig
def create_scatter_pyplot(token_positions: list[int], scores: list[int]) -> plt.Figure:
"""Create a scatter plot of token positions and scores."""
plt.style.use("ggplot")
fig = plt.figure(figsize=(11, 5))
ax = fig.add_subplot(111)
counts = Counter(zip(token_positions, scores))
X = []
Y = []
S = []
for (pos, score), size in counts.items():
X.append(pos)
Y.append(score)
S.append(size * 20)
ax.scatter(X, Y, color="#4698cf", s=S)
return fig
def create_bonus_confidence_plot(parts: list[dict], model_outputs: list[dict]) -> plt.Figure:
"""Create confidence plot for bonus parts."""
plt.style.use("ggplot")
fig = plt.figure(figsize=(10, 6))
ax = fig.add_subplot(111)
# Plot confidence for each part
x = range(1, len(parts) + 1)
confidences = [output["confidence"] for output in model_outputs]
scores = [output["score"] for output in model_outputs]
# Plot confidence bars
bars = ax.bar(x, confidences, color="#4698cf")
# Color bars based on correctness
for i, score in enumerate(scores):
bars[i].set_color("green" if score == 1 else "red")
ax.set_title("Part Confidence")
ax.set_xlabel("Part Number")
ax.set_ylabel("Confidence")
ax.set_xticks(x)
ax.set_xticklabels([f"Part {i}" for i in x])
return fig
def update_tossup_plot(highlighted_index: int, state: str) -> pd.DataFrame:
"""Update the plot when a token is hovered; add a vertical line on the plot."""
try:
if not state or state == "{}":
logging.warning("Empty state provided to update_plot")
return pd.DataFrame()
highlighted_index = int(highlighted_index) if highlighted_index else None
logging.info(f"Update plot triggered with token index: {highlighted_index}")
data = json.loads(state)
tokens = data.get("tokens", [])
values = data.get("values", [])
if not tokens or not values:
logging.warning("No tokens or values found in state")
return pd.DataFrame()
# Create updated plot with highlighting of the token point
# plot_data = create_line_plot(values, highlighted_index)
plot_data = create_tossup_confidence_pyplot(tokens, values, highlighted_index)
return plot_data
except Exception as e:
logging.error(f"Error updating plot: {e}")
return pd.DataFrame()
|