File size: 6,914 Bytes
0bab47c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02b7dec
 
0bab47c
 
 
 
02b7dec
0bab47c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02b7dec
 
 
0bab47c
 
 
 
 
 
02b7dec
 
0bab47c
 
 
 
 
 
 
 
 
 
 
02b7dec
0bab47c
 
 
02b7dec
0bab47c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import gradio as gr
import numpy as np

from app_configs import AVAILABLE_MODELS, UNSELECTED_VAR_NAME
from workflows.structs import Buzzer, TossupWorkflow

from .model_pipeline import PipelineInterface, PipelineState, PipelineUIState


def toggleable_slider(
    value, minimum, maximum, step, toggle_value=False, label=None, info=None, min_width=200, scale=1
):
    with gr.Column(elem_classes="toggleable", min_width=min_width, scale=scale):
        show_label = label is not None
        checkbox = gr.Checkbox(label=label, value=toggle_value, container=False, info=info, show_label=show_label)
        slider = gr.Slider(
            minimum=minimum,
            maximum=maximum,
            value=value,
            step=step,
            label="",
            interactive=True,
            show_label=False,
            container=False,
        )
        checkbox.change(fn=lambda x: gr.update(interactive=x), inputs=[checkbox], outputs=[slider])
    return checkbox, slider


class TossupPipelineState(PipelineState):
    workflow: TossupWorkflow


class TossupPipelineInterface(PipelineInterface):
    def __init__(
        self,
        workflow: TossupWorkflow,
        ui_state: PipelineUIState | None = None,
        model_options: list[str] = None,
        simple: bool = False,
        show_pipeline_selector: bool = False,
        defaults: dict = {},
    ):
        super().__init__(workflow, ui_state, model_options, simple, show_pipeline_selector)
        self.defaults = defaults

    def update_buzzer(
        self,
        state: TossupPipelineState,
        confidence_threshold: float,
        method: str,
        tokens_prob: float | None,
    ):
        """Update the buzzer."""

        prob_threshold = float(tokens_prob) if tokens_prob and tokens_prob > 0 else None
        state.workflow.buzzer = state.workflow.buzzer.model_copy(
            update={
                "method": method,
                "confidence_threshold": confidence_threshold,
                "prob_threshold": prob_threshold,
            }
        )
        Buzzer.model_validate(state.workflow.buzzer)
        return state

    def update_prob_slider(self, state: TossupPipelineState, answer_var: str, tokens_prob: float | None):
        """Update the probability slider based on the answer variable."""
        if answer_var == UNSELECTED_VAR_NAME:
            return gr.update(interactive=True)
        step_id = answer_var.split(".")[0]
        model_name = state.workflow.steps[step_id].model
        model_config = AVAILABLE_MODELS[model_name]
        is_model_with_logprobs = model_config.get("logprobs", False)
        buzzer = state.workflow.buzzer
        tokens_prob_threshold = tokens_prob if is_model_with_logprobs else None
        state = self.update_buzzer(
            state,
            confidence_threshold=buzzer.confidence_threshold,
            method=buzzer.method,
            tokens_prob=tokens_prob_threshold,
        )
        return state, gr.update(interactive=not is_model_with_logprobs)

    def _render_output_panel(self, available_variables: list[str], pipeline_state: TossupPipelineState):
        dropdowns = {}
        variable_options = [UNSELECTED_VAR_NAME] + [v for v in available_variables if v not in self.input_variables]
        with gr.Column(elem_classes="step-accordion control-panel"):
            with gr.Row(elem_classes="output-fields-header"):
                gr.Markdown("#### Final output variables mapping:")
            with gr.Row(elem_classes="output-fields-row"):
                for output_field in self.required_output_variables:
                    value = pipeline_state.workflow.outputs.get(output_field, UNSELECTED_VAR_NAME)
                    dropdown = gr.Dropdown(
                        label=output_field,
                        value=value,
                        choices=variable_options,
                        interactive=True,
                        elem_classes="output-field-variable",
                        # show_label=False,
                    )
                    dropdown.change(
                        self.sm.update_output_variables,
                        inputs=[self.pipeline_state, gr.State(output_field), dropdown],
                        outputs=[self.pipeline_state],
                    )
                    dropdowns[output_field] = dropdown
            with gr.Row(elem_classes="output-fields-header"):
                gr.Markdown(
                    "#### Buzzer settings:\n Set your thresholds for confidence and output tokens probability."
                )
            with gr.Row(elem_classes="control-panel"):
                self.confidence_slider = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    value=self.defaults.get("confidence_threshold", 0.85),
                    step=0.01,
                    label="Confidence",
                    elem_classes="slider-container",
                )
                self.buzzer_method_dropdown = gr.Dropdown(
                    choices=["AND", "OR"],
                    value=self.defaults.get("buzzer_method", "AND"),
                    label="Method",
                    interactive=True,
                    min_width=80,
                    scale=0,
                )
                self.prob_slider = gr.Slider(
                    value=self.defaults.get("logits_prob", 0.0),
                    label="Probability",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.001,
                    elem_classes="slider-container",
                )

        def update_choices(available_variables):
            """Update the choices for the dropdowns"""
            return [
                gr.update(choices=available_variables, value=None, selected=None) for dropdown in dropdowns.values()
            ]

        self.variables_state.change(
            update_choices,
            inputs=[self.variables_state],
            outputs=list(dropdowns.values()),
        )

        gr.on(
            triggers=[
                self.confidence_slider.input,
                self.buzzer_method_dropdown.input,
                self.prob_slider.input,
            ],
            fn=self.update_buzzer,
            inputs=[
                self.pipeline_state,
                self.confidence_slider,
                self.buzzer_method_dropdown,
                self.prob_slider,
            ],
            outputs=[self.pipeline_state],
        )

        # TODO: Do Add model step change triggers as well. (Model name change triggers)
        answer_dropdown = dropdowns["answer"]
        if answer_dropdown is not None:
            answer_dropdown.change(
                self.update_prob_slider,
                inputs=[self.pipeline_state, answer_dropdown, self.prob_slider],
                outputs=[self.pipeline_state, self.prob_slider],
            )