Spaces:
Sleeping
Sleeping
File size: 23,109 Bytes
848ce1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
# Copyright 2023 DAMO Academy and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import gc
import json
import math
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
from .configuration_mplug_owl2 import MPLUGOwl2Config, MplugOwlVisionConfig, MplugOwlVisualAbstractorConfig
from .modeling_mplug_owl2 import MPLUGOwl2LlamaForCausalLM
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
)
LlamaTokenizerFast = None
"""
Sample usage:
```
python3 /pure-mlo-scratch/sfan/model-parallel-trainer/llama2megatron/convert_llama2hf.py \
--input_dir /pure-mlo-scratch/llama/ --model_size 7 --output_dir /pure-mlo-scratch/llama/converted_HF_7B
```
Thereafter, models can be loaded via:
```py
from transformers import LlamaForCausalLM, LlamaTokenizer
model = LlamaForCausalLM.from_pretrained("/output/path")
tokenizer = LlamaTokenizer.from_pretrained("/output/path")
```
Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
"""
llama_s2layer = {7: 32, 13: 40, 30: 60, 65: 80, 70: 80}
llama_s2heads = {7: 32, 13: 40, 30: 52, 65: 64, 70: 64}
llama_s2dense = {7: 11008, 13: 13824, 30: 17920, 65: 22016,
70: 28672} # should be (2/3)*4*d, but it isn't exaclty that
llama_s2hidden = {7: 4096, 13: 5120, 32: 6656, 65: 8192, 70: 8192}
def compute_intermediate_size(n):
return int(math.ceil(n * 8 / 3) + 255) // 256 * 256
def read_json(path):
with open(path, "r") as f:
return json.load(f)
def write_json(text, path):
with open(path, "w") as f:
json.dump(text, f)
def write_model(model_path,
input_base_path,
model_size,
num_input_shards=1,
num_output_shards=2,
skip_permute=True,
norm_eps=1e-05):
# if os.path.exists(model_path):
# shutil.rmtree(model_path)
os.makedirs(model_path, exist_ok=True)
# tmp_model_path = os.path.join(model_path, "tmp")
tmp_model_path = model_path
os.makedirs(tmp_model_path, exist_ok=True)
num_shards = num_input_shards
n_layers = llama_s2layer[model_size]
n_heads = llama_s2heads[model_size]
n_heads_per_shard = n_heads // num_shards
n_dense = llama_s2dense[model_size]
n_hidden = llama_s2hidden[model_size]
hidden_per_head = n_hidden // n_heads
base = 10000.0
inv_freq = 1.0 / (base ** (torch.arange(0, hidden_per_head, 2).float() / hidden_per_head))
# permute for sliced rotary
def permute(w, skip_permute=skip_permute):
if skip_permute:
return w
return w.view(n_heads, n_hidden // n_heads // 2, 2, n_hidden).transpose(1, 2).reshape(n_hidden, n_hidden)
print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
# Load weights
if num_shards==1:
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
# /pure-mlo-scratch/alhernan/megatron-data/checkpoints/llama2-7b-tp4-pp1-optim/release/mp_rank_00/model_optim_rng.pt
if os.path.exists(os.path.join(input_base_path, 'release')):
filename = os.path.join(input_base_path, 'release', 'mp_rank_00', 'model_optim_rng.pt')
elif input_base_path.split('/')[-1].startswith('iter_'):
iteration = eval(input_base_path.split('/')[-1].replace('iter_', '').lstrip('0'))
load_dir = '/'.join(input_base_path.split('/')[:-1])
filename = os.path.join(input_base_path, 'mp_rank_00', 'model_optim_rng.pt')
if not os.path.exists(filename):
filename = filename.replace('model_optim_rng.pt', 'model_rng.pt')
else:
tracker_filename = os.path.join(input_base_path, 'latest_checkpointed_iteration.txt')
with open(tracker_filename, 'r') as f:
metastring = f.read().strip()
iteration = 'iter_{:07d}'.format(int(metastring))
filename = os.path.join(input_base_path, iteration, 'mp_rank_00', 'model_optim_rng.pt')
if not os.path.exists(filename):
filename = filename.replace('model_optim_rng.pt', 'model_rng.pt')
original_filename = filename
loaded = torch.load(filename, map_location="cpu")['model']['language_model']
else:
# Sharded
filenames = []
for i in range(num_shards):
if os.path.exists(os.path.join(input_base_path, 'release')):
filename = os.path.join(input_base_path, 'release', f'mp_rank_{i:02d}', 'model_optim_rng.pt')
else:
tracker_filename = os.path.join(input_base_path, 'latest_checkpointed_iteration.txt')
with open(tracker_filename, 'r') as f:
metastring = f.read().strip()
iteration = 'iter_{:07d}'.format(int(metastring))
filename = os.path.join(input_base_path, iteration, f'mp_rank_{i:02d}', 'model_optim_rng.pt')
if not os.path.exists(filename):
filename = filename.replace('model_optim_rng.pt', 'model_rng.pt')
filenames.append(filename)
loaded = [
torch.load(filenames[i], map_location="cpu")['model']['language_model']
for i in range(num_shards)
]
print('Llama-Megatron Loaded!')
param_count = 0
index_dict = {"weight_map": {}}
print(f'Weighted Converting for {n_layers} layers...')
for layer_i in range(n_layers):
print(layer_i)
filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"
if num_shards == 1:
# Unsharded
state_dict = {
f"model.layers.{layer_i}.self_attn.q_proj.weight": loaded['encoder'][f"layers.{layer_i}.self_attention.q_proj.weight"],
f"model.layers.{layer_i}.self_attn.k_proj.multiway.0.weight": loaded['encoder'][f"layers.{layer_i}.self_attention.k_proj.multiway.0.weight"],
f"model.layers.{layer_i}.self_attn.v_proj.multiway.0.weight": loaded['encoder'][f"layers.{layer_i}.self_attention.v_proj.multiway.0.weight"],
f"model.layers.{layer_i}.self_attn.k_proj.multiway.1.weight": loaded['encoder'][f"layers.{layer_i}.self_attention.k_proj.multiway.1.weight"],
f"model.layers.{layer_i}.self_attn.v_proj.multiway.1.weight": loaded['encoder'][f"layers.{layer_i}.self_attention.v_proj.multiway.1.weight"],
f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded['encoder'][f"layers.{layer_i}.self_attention.o_proj.weight"],
f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded['encoder'][f"layers.{layer_i}.mlp.gate_proj.weight"],
f"model.layers.{layer_i}.mlp.down_proj.weight": loaded['encoder'][f"layers.{layer_i}.mlp.down_proj.weight"],
f"model.layers.{layer_i}.mlp.up_proj.weight": loaded['encoder'][f"layers.{layer_i}.mlp.up_proj.weight"],
f"model.layers.{layer_i}.input_layernorm.multiway.0.weight": loaded['encoder'][f"layers.{layer_i}.input_layernorm.multiway.0.weight"],
f"model.layers.{layer_i}.post_attention_layernorm.multiway.0.weight": loaded['encoder'][f"layers.{layer_i}.post_attention_layernorm.multiway.0.weight"],
f"model.layers.{layer_i}.input_layernorm.multiway.1.weight": loaded['encoder'][f"layers.{layer_i}.input_layernorm.multiway.1.weight"],
f"model.layers.{layer_i}.post_attention_layernorm.multiway.1.weight": loaded['encoder'][f"layers.{layer_i}.post_attention_layernorm.multiway.1.weight"],
}
else:
raise NotImplemented
# else:
# # Sharded
# # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
# state_dict = {
# f"model.layers.{layer_i}.input_layernorm.weight": loaded[0]['encoder'][
# f"layers.{layer_i}.input_layernorm.multiway.0.weight"
# ].clone(),
# f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0]['encoder'][
# f"layers.{layer_i}.post_attention_layernorm.multiway.0.weight"
# ].clone(),
# }
# wqs, wks, wvs, ffn_w1s, ffn_w3s = [], [], [], [], []
# for shard_idx in range(num_shards):
# wqs.append(loaded[shard_idx]['encoder'][f"layers.{layer_i}.self_attention.q_proj.weight"])
# wks.append(loaded[shard_idx]['encoder'][f"layers.{layer_i}.self_attention.k_proj.multiway.0.weight"])
# wvs.append(loaded[shard_idx]['encoder'][f"layers.{layer_i}.self_attention.v_proj.multiway.0.weight"])
# state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(
# torch.cat(
# [
# wq.view(n_heads_per_shard, hidden_per_head, n_hidden)
# for wq in range(wqs)
# ],
# dim=0,
# ).reshape(n_hidden, n_hidden)
# )
# state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(
# torch.cat(
# [
# wk.view(n_heads_per_shard, hidden_per_head, n_hidden)
# for wk in range(wks)
# ],
# dim=0,
# ).reshape(n_hidden, n_hidden)
# )
# state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
# [
# wv.view(n_heads_per_shard, hidden_per_head, n_hidden)
# for wv in range(wvs)
# ],
# dim=0,
# ).reshape(n_hidden, n_hidden)
# state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
# [loaded[i]['encoder'][f"layers.{layer_i}.self_attention.o_proj.weight"] for i in range(num_shards)], dim=1
# )
# state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat(
# [loaded[i]['encoder'][f"layers.{layer_i}.mlp.gate_proj.weight"] for i in range(num_shards)], dim=0
# )
# state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat(
# [loaded[i]['encoder'][f"layers.{layer_i}.mlp.down_proj.weight"] for i in range(num_shards)], dim=1
# )
# state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat(
# [loaded[i]['encoder'][f"layers.{layer_i}.mlp.up_proj.weight"] for i in range(num_shards)], dim=0
# )
state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
for k, v in state_dict.items():
index_dict["weight_map"][k] = filename
param_count += v.numel()
torch.save(state_dict, os.path.join(tmp_model_path, filename))
print(f'Sharded file saved to {filename}')
filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"
if num_shards==1:
# Unsharded
state_dict = {
"model.embed_tokens.weight": loaded['embedding']['word_embeddings']['weight'],
"model.norm.weight": loaded['encoder']['norm.weight'],
"lm_head.weight": loaded['encoder']['lm_head.weight'],
}
else:
state_dict = {
"model.embed_tokens.weight": loaded[0]['embedding']['word_embeddings']['weight'],
"model.norm.weight": loaded[0]['encoder']['norm.weight'],
"lm_head.weight": loaded[0]['encoder']['lm_head.weight'],
}
loaded_all = torch.load(original_filename, map_location="cpu")['model']
# Vision Part
state_dict.update({
"model.vision_model.embeddings.cls_token": loaded_all['vision_model']['cls_token'],
"model.vision_model.embeddings.patch_embed.weight": loaded_all['vision_model']['patch_embed']['weight'],
"model.vision_model.embeddings.position_embedding": loaded_all['vision_model']['position_embeddings'],
"model.vision_model.embeddings.pre_layernorm.bias": loaded_all['vision_model']['pre_layernorm']['bias'],
"model.vision_model.embeddings.pre_layernorm.weight": loaded_all['vision_model']['pre_layernorm']['weight'],
"model.vision_model.post_layernorm.bias": loaded_all['vision_model']['transformer']['final_layernorm.bias'],
"model.vision_model.post_layernorm.weight": loaded_all['vision_model']['transformer']['final_layernorm.weight'],
})
for v_layer_idx in range(24):
state_dict.update({
f"model.vision_model.encoder.layers.{v_layer_idx}.input_layernorm.bias": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.input_layernorm.bias'],
f"model.vision_model.encoder.layers.{v_layer_idx}.input_layernorm.weight": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.input_layernorm.weight'],
f"model.vision_model.encoder.layers.{v_layer_idx}.mlp.fc1.bias": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.mlp.dense_h_to_4h.bias'],
f"model.vision_model.encoder.layers.{v_layer_idx}.mlp.fc1.weight": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.mlp.dense_h_to_4h.weight'],
f"model.vision_model.encoder.layers.{v_layer_idx}.mlp.fc2.bias": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.mlp.dense_4h_to_h.bias'],
f"model.vision_model.encoder.layers.{v_layer_idx}.mlp.fc2.weight": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.mlp.dense_4h_to_h.weight'],
f"model.vision_model.encoder.layers.{v_layer_idx}.post_attention_layernorm.bias": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.post_attention_layernorm.bias'],
f"model.vision_model.encoder.layers.{v_layer_idx}.post_attention_layernorm.weight": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.post_attention_layernorm.weight'],
f"model.vision_model.encoder.layers.{v_layer_idx}.self_attn.dense.bias": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.self_attention.dense.bias'],
f"model.vision_model.encoder.layers.{v_layer_idx}.self_attn.dense.weight": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.self_attention.dense.weight'],
f"model.vision_model.encoder.layers.{v_layer_idx}.self_attn.query_key_value.bias": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.self_attention.query_key_value.bias'],
f"model.vision_model.encoder.layers.{v_layer_idx}.self_attn.query_key_value.weight": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.self_attention.query_key_value.weight'],
})
# Abstractor Part
state_dict.update({
"model.visual_abstractor.query_embeds": loaded_all['vision_abstractor']['learnable_queries'],
"model.visual_abstractor.visual_fc.bias": loaded_all['vision_abstractor']['visual_fc']['bias'],
"model.visual_abstractor.visual_fc.weight": loaded_all['vision_abstractor']['visual_fc']['weight'],
"model.visual_abstractor.vit_eos": loaded_all['vision_abstractor']['vit_eos'],
})
for v_layer_idx in range(6):
state_dict.update({
# f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.attention.k_pos_embed":
f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.attention.key.bias": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.self_attention.k_proj.bias"],
f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.attention.key.weight": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.self_attention.k_proj.weight"],
# f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.attention.q_pos_embed": "pytorch_model-00004-of-00004.bin",
f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.attention.query.bias": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.self_attention.q_proj.bias"],
f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.attention.query.weight": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.self_attention.q_proj.weight"],
f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.attention.value.bias": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.self_attention.v_proj.bias"],
f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.attention.value.weight": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.self_attention.v_proj.weight"],
f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.norm1.bias": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.norm1.bias"],
f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.norm1.weight": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.norm1.weight"],
f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.normk.bias": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.normk.bias"],
f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.normk.weight": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.normk.weight"],
f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.output.mlp.ffn_ln.bias": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.mlp.ffn_ln.bias"],
f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.output.mlp.ffn_ln.weight": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.mlp.ffn_ln.weight"],
f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.output.mlp.w1.bias": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.mlp.w1.bias"],
f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.output.mlp.w1.weight": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.mlp.w1.weight"],
f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.output.mlp.w2.bias": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.mlp.w2.bias"],
f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.output.mlp.w2.weight": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.mlp.w2.weight"],
f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.output.mlp.w3.bias": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.mlp.w3.bias"],
f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.output.mlp.w3.weight": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.mlp.w3.weight"],
f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.output.norm2.bias": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.norm2.bias"],
f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.output.norm2.weight": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.norm2.weight"],
f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.output.out_proj.bias": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.self_attention.o_proj.bias"],
f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.output.out_proj.weight": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.self_attention.o_proj.weight"],
})
for k, v in state_dict.items():
index_dict["weight_map"][k] = filename
param_count += v.numel()
torch.save(state_dict, os.path.join(tmp_model_path, filename))
# Write configs
index_dict["metadata"] = {"total_size": param_count * 2}
write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))
config = MPLUGOwl2Config()
config.save_pretrained(tmp_model_path)
# Make space so we can load the model properly now.
del state_dict
del loaded
del loaded_all
gc.collect()
def write_tokenizer(tokenizer_path, input_tokenizer_path):
# Initialize the tokenizer based on the `spm` model
tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")
tokenizer = tokenizer_class(input_tokenizer_path)
tokenizer.save_pretrained(tokenizer_path)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--input_dir",
help="Location of LLaMA_Megatron weights",
)
parser.add_argument(
"--model_size",
type=int,
default=7,
choices=[7, 13, 30, 65, 70],
)
parser.add_argument(
"--num_input_shards",
type=int,
default=1,
)
parser.add_argument(
"--num_output_shards",
type=int,
default=1,
)
parser.add_argument('--skip_permute', action='store_true')
parser.add_argument(
"--output_dir",
help="Location to write HF model and tokenizer",
)
args = parser.parse_args()
write_model(
model_path=args.output_dir,
input_base_path=args.input_dir,
model_size=args.model_size,
num_input_shards=args.num_input_shards,
num_output_shards=args.num_output_shards,
skip_permute=args.skip_permute
)
if __name__ == "__main__":
main()
|