File size: 4,565 Bytes
f8ea2c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init as init
from torch.nn.modules.batchnorm import _BatchNorm

from insir_models.nafnet_utils import Local_Base, LayerNorm2d
from insir_models.nafnet import SimpleGate, NAFBlock


class ICB(nn.Module):
    """
    Instruction Condition Block (ICB)
    Paper Section 3.3
    """

    def __init__(self, feature_dim, text_dim=768):
        super(ICB, self).__init__()
        self.fc    = nn.Linear(text_dim, feature_dim)
        self.block = NAFBlock(feature_dim)
        self.beta  = nn.Parameter(torch.zeros((1, feature_dim, 1, 1)), requires_grad=True)
        self.gamma = nn.Parameter(torch.zeros((1, feature_dim, 1, 1)), requires_grad=True)

    def forward(self, x, text_embedding):
        gating_factors = torch.sigmoid(self.fc(text_embedding))
        gating_factors = gating_factors.unsqueeze(-1).unsqueeze(-1)

        f = x * self.gamma + self.beta  # 1) learned feature scaling/modulation
        f = f * gating_factors          # 2) (soft) feature routing based on text
        f = self.block(f)               # 3) block feature enhancement
        return f + x


class InstructIR(nn.Module):
    """
    InstructIR model using NAFNet (ECCV 2022) as backbone.
    The model takes as input an RGB image and a text embedding (encoded instruction).
    Described in Paper Section 3.3
    """

    def __init__(self, img_channel=3, width=16, middle_blk_num=1, enc_blk_nums=[], dec_blk_nums=[], txtdim=768):
        super().__init__()

        self.intro  = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1,
                              bias=True)
        self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1,
                              bias=True)

        self.encoders    = nn.ModuleList()
        self.decoders    = nn.ModuleList()
        self.middle_blks = nn.ModuleList()
        self.ups         = nn.ModuleList()
        self.downs       = nn.ModuleList()
        self.enc_cond    = nn.ModuleList()
        self.dec_cond    = nn.ModuleList()

        chan = width
        for num in enc_blk_nums:
            self.encoders.append(
                nn.Sequential(
                    *[NAFBlock(chan) for _ in range(num)]
                )
            )
            
            self.enc_cond.append(ICB(chan, txtdim))

            self.downs.append(
                nn.Conv2d(chan, 2*chan, 2, 2)
            )
            chan = chan * 2

        self.middle_blks = nn.Sequential(
                *[NAFBlock(chan) for _ in range(middle_blk_num)]
            )

        for num in dec_blk_nums:
            self.ups.append(
                nn.Sequential(
                    nn.Conv2d(chan, chan * 2, 1, bias=False),
                    nn.PixelShuffle(2)
                )
            )
            chan = chan // 2
            self.decoders.append(
                nn.Sequential(
                    *[NAFBlock(chan) for _ in range(num)]
                )
            )
            # Add text embedding as modulation
            self.dec_cond.append(ICB(chan, txtdim))

        self.padder_size = 2 ** len(self.encoders)

    def forward(self, inp, txtembd):
        B, C, H, W = inp.shape
        inp = self.check_image_size(inp)

        x = self.intro(inp)
        encs = []

        for encoder, enc_mod, down in zip(self.encoders, self.enc_cond, self.downs):
            x = encoder(x)
            x = enc_mod(x, txtembd)
            encs.append(x)
            x = down(x)

        x = self.middle_blks(x)

        for decoder, up, enc_skip, dec_mod in zip(self.decoders, self.ups, encs[::-1], self.dec_cond):
            x = up(x)
            x = x + enc_skip
            x = decoder(x)
            x = dec_mod(x, txtembd)

        x = self.ending(x)
        x = x + inp

        return x[:, :, :H, :W]

    def check_image_size(self, x):
        _, _, h, w = x.size()
        mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size
        mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size
        x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h))
        return x


def create_model(input_channels = 3, width = 32, enc_blks = [2, 2, 4, 8], middle_blk_num = 12, dec_blks = [2, 2, 2, 2], txtdim=768):

    net = InstructIR(img_channel=input_channels, width=width, middle_blk_num=middle_blk_num,
                      enc_blk_nums=enc_blks, dec_blk_nums=dec_blks, txtdim=txtdim)

    return net