Spaces:
Sleeping
Sleeping
File size: 1,106 Bytes
af77804 d5a5133 af77804 d5a5133 89587d2 d5a5133 4a40fb3 abf471d d5a5133 abf471d 5faff6c d5a5133 abf471d d5a5133 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
"microsoft/phi-2", torch_dtype=torch.float32, device_map="auto", trust_remote_code=True
)
# Streamlit app
st.title("Fake news Generation with Transformers Microsoft phi-2")
st.image("https://raw.githubusercontent.com/noorkhokhar99/NewsGuardian/main/logo.jpeg")
# User input
prompt = st.text_area("Enter your prompt:", "This news is real or fake; you get results from here NewsGuardian")
# Generate output
if st.button("Generate"):
with torch.no_grad():
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
output_ids = model.generate(
token_ids.to(model.device),
max_new_tokens=20,
do_sample=True,
temperature=0.1
)
output = tokenizer.decode(output_ids[0][token_ids.size(1):])
st.text("Generated Output:")
st.write(output)
|