pvanand commited on
Commit
7bd26ee
·
verified ·
1 Parent(s): 1f1d19b

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +28 -8
main.py CHANGED
@@ -7,7 +7,7 @@ import os
7
  from dotenv import load_dotenv, find_dotenv
8
 
9
  # Load environment variables from .env file
10
- # load_dotenv("keys.env")
11
 
12
  app = FastAPI()
13
  TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
@@ -25,18 +25,39 @@ SysPromptList = "You are now in the role of an expert AI who can extract structu
25
  SysPromptDefault = "You are an expert AI, complete the given task. Do not add any additional comments."
26
  SysPromptMd = "You are an expert AI who can create a structured report using information provided in the context from user request.The report should be in markdown format consists of markdown tables structured into subtopics. Do not add any additional comments."
27
 
28
- class Query(BaseModel):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  query: str = Query(default="market research", description="input query to generate Report")
30
  description: str = Query(default="", description="additional context for report")
31
  user_id: str = Query(default="", description="unique user id")
32
  user_name: str = Query(default="", description="user name")
 
 
 
33
 
34
  @app.post("/generate_report")
35
- async def generate_report(request: Request, query: Query):
36
  query_str = query.query
37
  description = query.description
38
  user_id = query.user_id
39
-
 
 
 
40
  # Combine query with user keywords
41
  search_query = query_str
42
 
@@ -44,7 +65,7 @@ async def generate_report(request: Request, query: Query):
44
  urls = search_brave(search_query, num_results=4)
45
 
46
  # Fetch and extract content from the URLs
47
- all_text_with_urls = fetch_and_extract_content(urls, query_str)
48
 
49
  # Prepare the prompt for generating the report
50
  additional_context = limit_tokens(str(all_text_with_urls))
@@ -52,7 +73,7 @@ async def generate_report(request: Request, query: Query):
52
  md_report = together_response(prompt, model=llm_default_medium, SysPrompt=SysPromptMd)
53
 
54
  # Insert data into database (or other storage)
55
- insert_data(user_id, query_str, description, str(all_text_with_urls), md_report)
56
  references_html = dict()
57
  for text, url in all_text_with_urls:
58
  references_html[url] = str(md_to_html(text))
@@ -69,5 +90,4 @@ app.add_middleware(
69
  allow_origins=["*"],
70
  allow_credentials=True,
71
  allow_methods=["*"],
72
- allow_headers=["*"],
73
- )
 
7
  from dotenv import load_dotenv, find_dotenv
8
 
9
  # Load environment variables from .env file
10
+ #load_dotenv("keys.env")
11
 
12
  app = FastAPI()
13
  TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
 
25
  SysPromptDefault = "You are an expert AI, complete the given task. Do not add any additional comments."
26
  SysPromptMd = "You are an expert AI who can create a structured report using information provided in the context from user request.The report should be in markdown format consists of markdown tables structured into subtopics. Do not add any additional comments."
27
 
28
+ sys_prompts = {
29
+ "offline": {
30
+ "Chat": "You are an expert AI, complete the given task. Do not add any additional comments.",
31
+ "Full Text Report": "You are an expert AI who can create a detailed report from user request. The report should be in markdown format. Do not add any additional comments.",
32
+ "Tabular Report": "You are an expert AI who can create a structured report from user request.The report should be in markdown format structured into subtopics/tables/lists. Do not add any additional comments.",
33
+ "Tables only": "You are an expert AI who can create a structured tabular report from user request.The report should be in markdown format consists of only markdown tables. Do not add any additional comments.",
34
+ },
35
+ "online": {
36
+ "Chat": "You are an expert AI, complete the given task using the provided context. Do not add any additional comments.",
37
+ "Full Text Report": "You are an expert AI who can create a detailed report using information provided in the context from user request. The report should be in markdown format. Do not add any additional comments.",
38
+ "Tabular Report": "You are an expert AI who can create a structured report using information provided in the context from user request. The report should be in markdown format structured into subtopics/tables/lists. Do not add any additional comments.",
39
+ "Tables only": "You are an expert AI who can create a structured tabular report using information provided in the context from user request. The report should be in markdown format consists of only markdown tables. Do not add any additional comments.",
40
+ },
41
+ }
42
+
43
+ class QueryModel(BaseModel):
44
  query: str = Query(default="market research", description="input query to generate Report")
45
  description: str = Query(default="", description="additional context for report")
46
  user_id: str = Query(default="", description="unique user id")
47
  user_name: str = Query(default="", description="user name")
48
+ internet: bool = Query(default=True, description="Enable Internet search")
49
+ output_format: str = Query(default="Tabular Report", description="Output format for the report", enum=["Chat", "Full Text Report", "Tabular Report", "Tables only"])
50
+ data_format: str = Query(default="Structured data", description="Type of data to extract from the internet", enum=["No presets", "Structured data", "Quantitative data"])
51
 
52
  @app.post("/generate_report")
53
+ async def generate_report(request: Request, query: QueryModel):
54
  query_str = query.query
55
  description = query.description
56
  user_id = query.user_id
57
+ internet = "online" if query.internet else "offline"
58
+ output_format = sys_prompts[internet][query.output_format]
59
+ data_format = query.data_format
60
+ #return {output_format,data_format}
61
  # Combine query with user keywords
62
  search_query = query_str
63
 
 
65
  urls = search_brave(search_query, num_results=4)
66
 
67
  # Fetch and extract content from the URLs
68
+ all_text_with_urls = fetch_and_extract_content(data_format, urls, query_str)
69
 
70
  # Prepare the prompt for generating the report
71
  additional_context = limit_tokens(str(all_text_with_urls))
 
73
  md_report = together_response(prompt, model=llm_default_medium, SysPrompt=SysPromptMd)
74
 
75
  # Insert data into database (or other storage)
76
+ #insert_data(user_id, query_str, description, str(all_text_with_urls), md_report)
77
  references_html = dict()
78
  for text, url in all_text_with_urls:
79
  references_html[url] = str(md_to_html(text))
 
90
  allow_origins=["*"],
91
  allow_credentials=True,
92
  allow_methods=["*"],
93
+ allow_headers=["*"],)