Spaces:
Running
Running
Update document_generator.py
Browse files- document_generator.py +33 -29
document_generator.py
CHANGED
@@ -40,7 +40,7 @@ FORMAT YOUR OUTPUT AS MARKDOWN ENCLOSED IN <response></response> tags
|
|
40 |
DOCUMENT_SECTION_PROMPT_USER = """<prompt>Output the content for the section "{section_or_subsection_title}" formatted as markdown. Follow this instruction: {content_instruction}</prompt>"""
|
41 |
|
42 |
# File: app.py
|
43 |
-
import os
|
44 |
import json
|
45 |
import re
|
46 |
import time
|
@@ -52,16 +52,17 @@ import functools
|
|
52 |
from fastapi import APIRouter, HTTPException
|
53 |
from pydantic import BaseModel
|
54 |
from fastapi_cache.decorator import cache
|
|
|
55 |
|
56 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
57 |
logger = logging.getLogger(__name__)
|
58 |
|
59 |
def log_execution(func: Callable) -> Callable:
|
60 |
@functools.wraps(func)
|
61 |
-
def wrapper(*args: Any, **kwargs: Any) -> Any:
|
62 |
logger.info(f"Executing {func.__name__}")
|
63 |
try:
|
64 |
-
result = func(*args, **kwargs)
|
65 |
logger.info(f"{func.__name__} completed successfully")
|
66 |
return result
|
67 |
except Exception as e:
|
@@ -77,7 +78,7 @@ class AIClient:
|
|
77 |
)
|
78 |
|
79 |
@log_execution
|
80 |
-
def generate_response(
|
81 |
self,
|
82 |
messages: List[Dict[str, str]],
|
83 |
model: str = "openai/gpt-4o-mini",
|
@@ -85,12 +86,14 @@ class AIClient:
|
|
85 |
) -> Optional[str]:
|
86 |
if not messages:
|
87 |
return None
|
88 |
-
|
|
|
|
|
89 |
model=model,
|
90 |
messages=messages,
|
91 |
max_tokens=max_tokens,
|
92 |
stream=False
|
93 |
-
)
|
94 |
return response.choices[0].message.content
|
95 |
|
96 |
class DocumentGenerator:
|
@@ -120,14 +123,14 @@ class DocumentGenerator:
|
|
120 |
return content.lstrip()
|
121 |
|
122 |
@log_execution
|
123 |
-
def generate_document_outline(self, query: str, max_retries: int = 3) -> Optional[Dict]:
|
124 |
messages = [
|
125 |
{"role": "system", "content": DOCUMENT_OUTLINE_PROMPT_SYSTEM},
|
126 |
{"role": "user", "content": DOCUMENT_OUTLINE_PROMPT_USER.format(query=query)}
|
127 |
]
|
128 |
|
129 |
for attempt in range(max_retries):
|
130 |
-
outline_response = self.ai_client.generate_response(messages, model="openai/gpt-4o")
|
131 |
outline_json_text = self.extract_between_tags(outline_response, "output")
|
132 |
|
133 |
try:
|
@@ -142,7 +145,7 @@ class DocumentGenerator:
|
|
142 |
return None
|
143 |
|
144 |
@log_execution
|
145 |
-
def generate_content(self, title: str, content_instruction: str, section_number: str) -> str:
|
146 |
self.content_messages.append({
|
147 |
"role": "user",
|
148 |
"content": DOCUMENT_SECTION_PROMPT_USER.format(
|
@@ -150,7 +153,7 @@ class DocumentGenerator:
|
|
150 |
content_instruction=content_instruction
|
151 |
)
|
152 |
})
|
153 |
-
section_response = self.ai_client.generate_response(self.content_messages)
|
154 |
content = self.extract_between_tags(section_response, "response")
|
155 |
content = self.remove_duplicate_title(content, title, section_number)
|
156 |
self.content_messages.append({
|
@@ -160,7 +163,7 @@ class DocumentGenerator:
|
|
160 |
return content
|
161 |
|
162 |
@log_execution
|
163 |
-
def generate_full_document(self, document_outline: Dict, query: str)
|
164 |
self.document_outline = document_outline
|
165 |
|
166 |
overall_objective = query
|
@@ -181,16 +184,21 @@ class DocumentGenerator:
|
|
181 |
section_number = section.get("SectionNumber", "")
|
182 |
content_instruction = section.get("Content", "")
|
183 |
logger.info(f"Generating content for section: {section_title}")
|
184 |
-
section["Content"] = self.generate_content(section_title, content_instruction, section_number)
|
|
|
185 |
|
186 |
for subsection in section.get("Subsections", []):
|
187 |
subsection_title = subsection.get("Title", "")
|
188 |
subsection_number = subsection.get("SectionNumber", "")
|
189 |
subsection_content_instruction = subsection.get("Content", "")
|
190 |
logger.info(f"Generating content for subsection: {subsection_title}")
|
191 |
-
subsection["Content"] = self.generate_content(subsection_title, subsection_content_instruction, subsection_number)
|
|
|
192 |
|
193 |
-
|
|
|
|
|
|
|
194 |
|
195 |
class MarkdownConverter:
|
196 |
@staticmethod
|
@@ -258,9 +266,6 @@ class MarkdownDocumentRequest(BaseModel):
|
|
258 |
json_document: Dict
|
259 |
query: str
|
260 |
|
261 |
-
class MarkdownDocumentResponse(BaseModel):
|
262 |
-
markdown_document: str
|
263 |
-
|
264 |
@cache(expire=600*24*7)
|
265 |
@router.post("/generate-document/json", response_model=JsonDocumentResponse)
|
266 |
async def generate_document_outline_endpoint(request: DocumentRequest):
|
@@ -269,7 +274,7 @@ async def generate_document_outline_endpoint(request: DocumentRequest):
|
|
269 |
|
270 |
try:
|
271 |
# Generate the document outline
|
272 |
-
json_document = document_generator.generate_document_outline(request.query)
|
273 |
|
274 |
if json_document is None:
|
275 |
raise HTTPException(status_code=500, detail="Failed to generate a valid document outline")
|
@@ -278,21 +283,20 @@ async def generate_document_outline_endpoint(request: DocumentRequest):
|
|
278 |
except Exception as e:
|
279 |
raise HTTPException(status_code=500, detail=str(e))
|
280 |
|
281 |
-
@router.post("/generate-document/markdown"
|
282 |
async def generate_markdown_document_endpoint(request: MarkdownDocumentRequest):
|
283 |
ai_client = AIClient()
|
284 |
document_generator = DocumentGenerator(ai_client)
|
285 |
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
raise HTTPException(status_code=500, detail=str(e))
|
296 |
|
297 |
@router.post("/generate-document-test", response_model=MarkdownDocumentResponse)
|
298 |
async def test_generate_document_endpoint(request: DocumentRequest):
|
|
|
40 |
DOCUMENT_SECTION_PROMPT_USER = """<prompt>Output the content for the section "{section_or_subsection_title}" formatted as markdown. Follow this instruction: {content_instruction}</prompt>"""
|
41 |
|
42 |
# File: app.py
|
43 |
+
import os
|
44 |
import json
|
45 |
import re
|
46 |
import time
|
|
|
52 |
from fastapi import APIRouter, HTTPException
|
53 |
from pydantic import BaseModel
|
54 |
from fastapi_cache.decorator import cache
|
55 |
+
from starlette.responses import StreamingResponse
|
56 |
|
57 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
58 |
logger = logging.getLogger(__name__)
|
59 |
|
60 |
def log_execution(func: Callable) -> Callable:
|
61 |
@functools.wraps(func)
|
62 |
+
async def wrapper(*args: Any, **kwargs: Any) -> Any:
|
63 |
logger.info(f"Executing {func.__name__}")
|
64 |
try:
|
65 |
+
result = await func(*args, **kwargs)
|
66 |
logger.info(f"{func.__name__} completed successfully")
|
67 |
return result
|
68 |
except Exception as e:
|
|
|
78 |
)
|
79 |
|
80 |
@log_execution
|
81 |
+
async def generate_response(
|
82 |
self,
|
83 |
messages: List[Dict[str, str]],
|
84 |
model: str = "openai/gpt-4o-mini",
|
|
|
86 |
) -> Optional[str]:
|
87 |
if not messages:
|
88 |
return None
|
89 |
+
loop = asyncio.get_event_loop()
|
90 |
+
response = await loop.run_in_executor(None, functools.partial(
|
91 |
+
self.client.chat.completions.create,
|
92 |
model=model,
|
93 |
messages=messages,
|
94 |
max_tokens=max_tokens,
|
95 |
stream=False
|
96 |
+
))
|
97 |
return response.choices[0].message.content
|
98 |
|
99 |
class DocumentGenerator:
|
|
|
123 |
return content.lstrip()
|
124 |
|
125 |
@log_execution
|
126 |
+
async def generate_document_outline(self, query: str, max_retries: int = 3) -> Optional[Dict]:
|
127 |
messages = [
|
128 |
{"role": "system", "content": DOCUMENT_OUTLINE_PROMPT_SYSTEM},
|
129 |
{"role": "user", "content": DOCUMENT_OUTLINE_PROMPT_USER.format(query=query)}
|
130 |
]
|
131 |
|
132 |
for attempt in range(max_retries):
|
133 |
+
outline_response = await self.ai_client.generate_response(messages, model="openai/gpt-4o")
|
134 |
outline_json_text = self.extract_between_tags(outline_response, "output")
|
135 |
|
136 |
try:
|
|
|
145 |
return None
|
146 |
|
147 |
@log_execution
|
148 |
+
async def generate_content(self, title: str, content_instruction: str, section_number: str) -> str:
|
149 |
self.content_messages.append({
|
150 |
"role": "user",
|
151 |
"content": DOCUMENT_SECTION_PROMPT_USER.format(
|
|
|
153 |
content_instruction=content_instruction
|
154 |
)
|
155 |
})
|
156 |
+
section_response = await self.ai_client.generate_response(self.content_messages)
|
157 |
content = self.extract_between_tags(section_response, "response")
|
158 |
content = self.remove_duplicate_title(content, title, section_number)
|
159 |
self.content_messages.append({
|
|
|
163 |
return content
|
164 |
|
165 |
@log_execution
|
166 |
+
async def generate_full_document(self, document_outline: Dict, query: str):
|
167 |
self.document_outline = document_outline
|
168 |
|
169 |
overall_objective = query
|
|
|
184 |
section_number = section.get("SectionNumber", "")
|
185 |
content_instruction = section.get("Content", "")
|
186 |
logger.info(f"Generating content for section: {section_title}")
|
187 |
+
section["Content"] = await self.generate_content(section_title, content_instruction, section_number)
|
188 |
+
yield json.dumps({"type": "document_section", "content": section}) + "\n"
|
189 |
|
190 |
for subsection in section.get("Subsections", []):
|
191 |
subsection_title = subsection.get("Title", "")
|
192 |
subsection_number = subsection.get("SectionNumber", "")
|
193 |
subsection_content_instruction = subsection.get("Content", "")
|
194 |
logger.info(f"Generating content for subsection: {subsection_title}")
|
195 |
+
subsection["Content"] = await self.generate_content(subsection_title, subsection_content_instruction, subsection_number)
|
196 |
+
yield json.dumps({"type": "document_subsection", "content": subsection}) + "\n"
|
197 |
|
198 |
+
# Generate the complete markdown document
|
199 |
+
full_document = self.document_outline
|
200 |
+
markdown_document = MarkdownConverter.convert_to_markdown(full_document["Document"])
|
201 |
+
yield json.dumps({"type": "complete_document", "content": markdown_document}) + "\n"
|
202 |
|
203 |
class MarkdownConverter:
|
204 |
@staticmethod
|
|
|
266 |
json_document: Dict
|
267 |
query: str
|
268 |
|
|
|
|
|
|
|
269 |
@cache(expire=600*24*7)
|
270 |
@router.post("/generate-document/json", response_model=JsonDocumentResponse)
|
271 |
async def generate_document_outline_endpoint(request: DocumentRequest):
|
|
|
274 |
|
275 |
try:
|
276 |
# Generate the document outline
|
277 |
+
json_document = await document_generator.generate_document_outline(request.query)
|
278 |
|
279 |
if json_document is None:
|
280 |
raise HTTPException(status_code=500, detail="Failed to generate a valid document outline")
|
|
|
283 |
except Exception as e:
|
284 |
raise HTTPException(status_code=500, detail=str(e))
|
285 |
|
286 |
+
@router.post("/generate-document/markdown")
|
287 |
async def generate_markdown_document_endpoint(request: MarkdownDocumentRequest):
|
288 |
ai_client = AIClient()
|
289 |
document_generator = DocumentGenerator(ai_client)
|
290 |
|
291 |
+
async def event_stream():
|
292 |
+
try:
|
293 |
+
# Generate the full document content and stream it
|
294 |
+
async for section in document_generator.generate_full_document(request.json_document, request.query):
|
295 |
+
yield section
|
296 |
+
except Exception as e:
|
297 |
+
yield json.dumps({"type": "error", "message": str(e)}) + "\n"
|
298 |
+
|
299 |
+
return StreamingResponse(event_stream(), media_type="application/json")
|
|
|
300 |
|
301 |
@router.post("/generate-document-test", response_model=MarkdownDocumentResponse)
|
302 |
async def test_generate_document_endpoint(request: DocumentRequest):
|