Spaces:
Running
Running
# File: prompts.py | |
DOCUMENT_OUTLINE_PROMPT_SYSTEM = """You are a document generator. Provide the outline of the document requested in <prompt></prompt> in JSON format. | |
Include sections and subsections if required. Use the "Content" field to provide a specific prompt or instruction for generating content for that particular section or subsection. | |
OUTPUT IN FOLLOWING JSON FORMAT enclosed in <output> tags | |
<output> | |
{ | |
"Document": { | |
"Title": "Document Title", | |
"Author": "Author Name", | |
"Date": "YYYY-MM-DD", | |
"Version": "1.0", | |
"Sections": [ | |
{ | |
"SectionNumber": "1", | |
"Title": "Section Title", | |
"Content": "Specific prompt or instruction for generating content for this section", | |
"Subsections": [ | |
{ | |
"SectionNumber": "1.1", | |
"Title": "Subsection Title", | |
"Content": "Specific prompt or instruction for generating content for this subsection" | |
} | |
] | |
} | |
] | |
} | |
} | |
</output>""" | |
DOCUMENT_OUTLINE_PROMPT_USER = """<prompt>{query}</prompt>""" | |
DOCUMENT_SECTION_PROMPT_SYSTEM = """You are a document generator, You need to output only the content requested in the section in the prompt. | |
FORMAT YOUR OUTPUT AS MARKDOWN ENCLOSED IN <response></response> tags | |
<overall_objective>{overall_objective}</overall_objective> | |
<document_layout>{document_layout}</document_layout>""" | |
DOCUMENT_SECTION_PROMPT_USER = """<prompt>Output the content for the section "{section_or_subsection_title}" formatted as markdown. Follow this instruction: {content_instruction}</prompt>""" | |
# File: app.py | |
import os | |
import json | |
import re | |
import asyncio | |
from typing import List, Dict, Optional, Any, Callable | |
from openai import OpenAI | |
import logging | |
import functools | |
from fastapi import APIRouter, HTTPException, Request | |
from fastapi.responses import StreamingResponse | |
from pydantic import BaseModel | |
from fastapi_cache.decorator import cache | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
def log_execution(func: Callable) -> Callable: | |
def wrapper(*args: Any, **kwargs: Any) -> Any: | |
logger.info(f"Executing {func.__name__}") | |
try: | |
result = func(*args, **kwargs) | |
logger.info(f"{func.__name__} completed successfully") | |
return result | |
except Exception as e: | |
logger.error(f"Error in {func.__name__}: {e}") | |
raise | |
return wrapper | |
class AIClient: | |
def __init__(self): | |
self.client = OpenAI( | |
base_url="https://openrouter.ai/api/v1", | |
api_key="sk-or-v1-"+os.environ['OPENROUTER_API_KEY'] | |
) | |
def generate_response( | |
self, | |
messages: List[Dict[str, str]], | |
model: str = "openai/gpt-4o-mini", | |
max_tokens: int = 32000 | |
) -> Optional[str]: | |
if not messages: | |
return None | |
response = self.client.chat.completions.create( | |
model=model, | |
messages=messages, | |
max_tokens=max_tokens, | |
stream=False | |
) | |
return response.choices[0].message.content | |
class DocumentGenerator: | |
def __init__(self, ai_client: AIClient): | |
self.ai_client = ai_client | |
self.document_outline = None | |
self.content_messages = [] | |
def extract_between_tags(text: str, tag: str) -> str: | |
pattern = f"<{tag}>(.*?)</{tag}>" | |
match = re.search(pattern, text, re.DOTALL) | |
return match.group(1).strip() if match else "" | |
def remove_duplicate_title(content: str, title: str, section_number: str) -> str: | |
patterns = [ | |
rf"^#+\s*{re.escape(section_number)}(?:\s+|\s*:\s*|\.\s*){re.escape(title)}", | |
rf"^#+\s*{re.escape(title)}", | |
rf"^{re.escape(section_number)}(?:\s+|\s*:\s*|\.\s*){re.escape(title)}", | |
rf"^{re.escape(title)}", | |
] | |
for pattern in patterns: | |
content = re.sub(pattern, "", content, flags=re.MULTILINE | re.IGNORECASE) | |
return content.lstrip() | |
def generate_document_outline(self, query: str, max_retries: int = 3) -> Optional[Dict]: | |
messages = [ | |
{"role": "system", "content": DOCUMENT_OUTLINE_PROMPT_SYSTEM}, | |
{"role": "user", "content": DOCUMENT_OUTLINE_PROMPT_USER.format(query=query)} | |
] | |
for attempt in range(max_retries): | |
outline_response = self.ai_client.generate_response(messages, model="openai/gpt-4o") | |
outline_json_text = self.extract_between_tags(outline_response, "output") | |
try: | |
self.document_outline = json.loads(outline_json_text) | |
return self.document_outline | |
except json.JSONDecodeError as e: | |
if attempt < max_retries - 1: | |
logger.warning(f"Failed to parse JSON (attempt {attempt + 1}): {e}") | |
logger.info("Retrying...") | |
else: | |
logger.error(f"Failed to parse JSON after {max_retries} attempts: {e}") | |
return None | |
def generate_content(self, title: str, content_instruction: str, section_number: str) -> str: | |
self.content_messages.append({ | |
"role": "user", | |
"content": DOCUMENT_SECTION_PROMPT_USER.format( | |
section_or_subsection_title=title, | |
content_instruction=content_instruction | |
) | |
}) | |
section_response = self.ai_client.generate_response(self.content_messages) | |
content = self.extract_between_tags(section_response, "response") | |
content = self.remove_duplicate_title(content, title, section_number) | |
self.content_messages.append({ | |
"role": "assistant", | |
"content": section_response | |
}) | |
return content | |
class MarkdownConverter: | |
def slugify(text: str) -> str: | |
return re.sub(r'\W+', '-', text.lower()) | |
def generate_toc(cls, sections: List[Dict]) -> str: | |
toc = "<div style='page-break-before: always;'></div>\n\n" | |
toc += "<h2 style='color: #2c3e50; text-align: center;'>Table of Contents</h2>\n\n" | |
toc += "<nav style='background-color: #f8f9fa; padding: 20px; border-radius: 5px; line-height: 1.6;'>\n\n" | |
for section in sections: | |
section_number = section['SectionNumber'] | |
section_title = section['Title'] | |
toc += f"<p><a href='#{cls.slugify(section_title)}' style='color: #3498db; text-decoration: none;'>{section_number}. {section_title}</a></p>\n\n" | |
for subsection in section.get('Subsections', []): | |
subsection_number = subsection['SectionNumber'] | |
subsection_title = subsection['Title'] | |
toc += f"<p style='margin-left: 20px;'><a href='#{cls.slugify(subsection_title)}' style='color: #2980b9; text-decoration: none;'>{subsection_number} {subsection_title}</a></p>\n\n" | |
toc += "</nav>\n\n" | |
return toc | |
def convert_to_markdown(cls, document: Dict) -> str: | |
markdown = "<div style='text-align: center; padding-top: 33vh;'>\n\n" | |
markdown += f"<h1 style='color: #2c3e50; border-bottom: 2px solid #3498db; padding-bottom: 10px; display: inline-block;'>{document['Title']}</h1>\n\n" | |
markdown += f"<p style='color: #7f8c8d;'><em>By {document['Author']}</em></p>\n\n" | |
markdown += f"<p style='color: #95a5a6;'>Version {document['Version']} | {document['Date']}</p>\n\n" | |
markdown += "</div>\n\n" | |
markdown += cls.generate_toc(document['Sections']) | |
markdown += "<div style='max-width: 800px; margin: 0 auto; font-family: \"Segoe UI\", Arial, sans-serif; line-height: 1.6;'>\n\n" | |
for section in document['Sections']: | |
markdown += "<div style='page-break-before: always;'></div>\n\n" | |
section_number = section['SectionNumber'] | |
section_title = section['Title'] | |
markdown += f"<h2 id='{cls.slugify(section_title)}' style='color: #2c3e50; border-bottom: 1px solid #bdc3c7; padding-bottom: 5px;'>{section_number}. {section_title}</h2>\n\n" | |
markdown += f"<div style='color: #34495e; margin-bottom: 20px;'>\n\n{section['Content']}\n\n</div>\n\n" | |
for subsection in section.get('Subsections', []): | |
subsection_number = subsection['SectionNumber'] | |
subsection_title = subsection['Title'] | |
markdown += f"<h3 id='{cls.slugify(subsection_title)}' style='color: #34495e;'>{subsection_number} {subsection_title}</h3>\n\n" | |
markdown += f"<div style='color: #34495e; margin-bottom: 20px;'>\n\n{subsection['Content']}\n\n</div>\n\n" | |
markdown += "</div>" | |
return markdown | |
router = APIRouter() | |
class DocumentRequest(BaseModel): | |
query: str | |
class JsonDocumentResponse(BaseModel): | |
json_document: Dict | |
class MarkdownDocumentRequest(BaseModel): | |
json_document: Dict | |
query: str | |
async def generate_document_stream(document_generator: DocumentGenerator, document_outline: Dict, query: str): | |
document_generator.document_outline = document_outline | |
overall_objective = query | |
document_layout = json.dumps(document_generator.document_outline, indent=2) | |
document_generator.content_messages = [ | |
{ | |
"role": "system", | |
"content": DOCUMENT_SECTION_PROMPT_SYSTEM.format( | |
overall_objective=overall_objective, | |
document_layout=document_layout | |
) | |
} | |
] | |
for section in document_generator.document_outline["Document"].get("Sections", []): | |
section_title = section.get("Title", "") | |
section_number = section.get("SectionNumber", "") | |
content_instruction = section.get("Content", "") | |
logging.info(f"Generating content for section: {section_title}") | |
content = document_generator.generate_content(section_title, content_instruction, section_number) | |
section["Content"] = content | |
yield json.dumps({ | |
"type": "document_section", | |
"content": { | |
"section_number": section_number, | |
"section_title": section_title, | |
"content": content | |
} | |
}) + "\n" | |
for subsection in section.get("Subsections", []): | |
subsection_title = subsection.get("Title", "") | |
subsection_number = subsection.get("SectionNumber", "") | |
subsection_content_instruction = subsection.get("Content", "") | |
logging.info(f"Generating content for subsection: {subsection_title}") | |
content = document_generator.generate_content(subsection_title, subsection_content_instruction, subsection_number) | |
subsection["Content"] = content | |
yield json.dumps({ | |
"type": "document_section", | |
"content": { | |
"section_number": subsection_number, | |
"section_title": subsection_title, | |
"content": content | |
} | |
}) + "\n" | |
markdown_document = MarkdownConverter.convert_to_markdown(document_generator.document_outline["Document"]) | |
yield json.dumps({"type": "complete_document", "content": markdown_document}) + "\n" | |
async def generate_document_outline_endpoint(request: DocumentRequest): | |
ai_client = AIClient() | |
document_generator = DocumentGenerator(ai_client) | |
try: | |
json_document = document_generator.generate_document_outline(request.query) | |
if json_document is None: | |
raise HTTPException(status_code=500, detail="Failed to generate a valid document outline") | |
return JsonDocumentResponse(json_document=json_document) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def generate_markdown_document_stream_endpoint(request: MarkdownDocumentRequest): | |
ai_client = AIClient() | |
document_generator = DocumentGenerator(ai_client) | |
async def stream_generator(): | |
try: | |
async for chunk in generate_document_stream(document_generator, request.json_document, request.query): | |
yield chunk | |
except Exception as e: | |
yield json.dumps({"type": "error", "content": str(e)}) + "\n" | |
return StreamingResponse(stream_generator(), media_type="application/x-ndjson") | |
########################################### | |
class MarkdownDocumentResponse(BaseModel): | |
markdown_document: str | |
async def test_generate_document_endpoint(request: DocumentRequest): | |
try: | |
# Load JSON document from file | |
json_path = os.path.join("output/document_generator", "ai-chatbot-prd.json") | |
with open(json_path, "r") as json_file: | |
json_document = json.load(json_file) | |
# Load Markdown document from file | |
md_path = os.path.join("output/document_generator", "ai-chatbot-prd.md") | |
with open(md_path, "r") as md_file: | |
markdown_document = md_file.read() | |
return MarkdownDocumentResponse(markdown_document=markdown_document) | |
except FileNotFoundError: | |
raise HTTPException(status_code=404, detail="Test files not found") | |
except json.JSONDecodeError: | |
raise HTTPException(status_code=500, detail="Error parsing JSON file") | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
class CacheTestResponse(BaseModel): | |
result: str | |
execution_time: float | |
# Cache for 1 minute | |
async def test_cache(test_id: int): | |
start_time = time.time() | |
# Simulate some time-consuming operation | |
await asyncio.sleep(2) | |
result = f"Test result for ID: {test_id}" | |
end_time = time.time() | |
execution_time = end_time - start_time | |
return CacheTestResponse( | |
result=result, | |
execution_time=execution_time | |
) |